Geometric mean and CV [Power / Sample Size]

posted by Helmut Homepage – Vienna, Austria, 2019-09-05 14:05  – Posting: # 20543
Views: 1,626

Hi Rocco,

» I see people will typically enter sample sd / sample mean of the single formulation, but I feel this is incorrect.

You are right. PK metrics like AUC and Cmax follow a lognormal distribution and hence, arithmetic means and their SDs / CVs are wrong (i.e., are positively biased).

If you plan for a parallel design you should use the geometric CV.
$$\overline{x}_{log}=\frac{\sum (log(x_i))}{n}$$ $$\overline{x}_{geo}=\sqrt[n]{x_1x_2\ldots x_n}=e^{\overline{x}_{log}}$$ $$s_{log}^{2}=\frac{\sum (log(x_i-\overline{x}_{log}))}{n-1}$$ $$CV_{log}=\sqrt{e^{s_{log}^{2}}-1}$$ Only if you don’t have access to the raw data, you would need simulations.

Cheers,
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

Activity
 Admin contact
20,145 posts in 4,248 threads, 1,385 registered users;
online 11 (0 registered, 11 guests [including 2 identified bots]).
Forum time (Europe/Vienna): 12:10 CET

A little Learning is a dang’rous Thing;
Drink deep, or taste not the Pierian Spring:
There shallow Draughts intoxicate the Brain,
And drinking largely sobers us again.    Alexander Pope

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5