FDA not concerned about the type I error? [Dissolution / BCS / IVIVC]
❝
❝ AFAIK this one is the most interesting. Authors are INSERM and FDA people. But it looks like their adaptive design cannot control TIE. How come?
The devil is in the details. and then:
→ type I error α1 (stage 1)=α2 (stage 2)=0.0304 to ensure global α 0.05 [7].
Though [7] lamented that Potvin used 0.0294 (which is Pocock’s α for a one-sided test and the right one for equivalence is 0.0304), they erred.
- 0.0304 is for Pocock’s group-sequential design (fixed N) with one interim at exactly N/2.
- The fact that 0.0304 ‘works’ for Potvin’s original ‘Method B’ is a coincidence (other settings of the GMR and power require other alphas).
library(Power2Stage)
alpha <- rep(0.0304, 2)
df <- data.frame(alpha1=alpha[1], alpha2=alpha[2],
CV=rep(0.24, 4), n1=c(12, rep(16, 3)),
GMR=rep(c(0.95, 0.9), each=2),
power=rep(c(0.8, 0.9), 2), TIE=NA, CL.lo=NA, CL.hi=NA)
for (j in 1:nrow(df)) {
df$TIE[j] <- power.tsd(alpha=alpha, CV=df$CV[j], n1=df$n1[j],
GMR=df$GMR[j], theta0=1.25,
targetpower=df$power[j], nsims=1e6)$pBE
df[j, 8:9] <- binom.test(df$TIE[j]*1e6, 1e6)[["conf.int"]]
}
adj <- c(0.0302, 0.0286, 0.0273, 0.0269)
ad <- data.frame(alpha1=adj, alpha2=adj,
CV=rep(0.24, 4), n1=c(12, rep(16, 3)),
GMR=rep(c(0.95, 0.9), each=2),
power=rep(c(0.8, 0.9), 2), TIE=NA,
sig.lim=binom.test(0.05*1e6, 1e6,
alternative="less")[["conf.int"]][2])
for (j in 1:nrow(ad)) {
ad$TIE[j] <- power.tsd(alpha=rep(adj[j], 2), CV=ad$CV[j], n1=ad$n1[j],
GMR=ad$GMR[j], theta0=1.25,
targetpower=ad$power[j], nsims=1e6)$pBE
}
cat("\n\u201Cnatural constant\u201D (one size fits all)\n");print(signif(df, 5), row.names=FALSE)
cat("\nadjusted alphas\n");print(signif(ad, 5), row.names=FALSE)
“natural constant” (one size fits all)
alpha1 alpha2 CV n1 GMR power TIE CL.lo CL.hi
0.0304 0.0304 0.24 12 0.95 0.8 0.050270 0.049843 0.050700
0.0304 0.0304 0.24 16 0.95 0.9 0.052329 0.051893 0.052767
0.0304 0.0304 0.24 16 0.90 0.8 0.055298 0.054851 0.055748
0.0304 0.0304 0.24 16 0.90 0.9 0.056219 0.055768 0.056672
adjusted alphas
alpha1 alpha2 CV n1 GMR power TIE sig.lim
0.0302 0.0302 0.24 12 0.95 0.8 0.049987 0.05036
0.0286 0.0286 0.24 16 0.95 0.9 0.049576 0.05036
0.0273 0.0273 0.24 16 0.90 0.8 0.049789 0.05036
0.0269 0.0269 0.24 16 0.90 0.9 0.049794 0.05036
Furthermore, they performed 500 (‼) simulations for the type I error, …
Quote:
→ In most cases TSS and TSA type 1 error estimates
are within the 0.05 prediction interval [0.0326-0.0729]
round(as.numeric(binom.test(0.05*500, 500)[["conf.int"]]), 4)
[1] 0.0326 0.0729
signif(binom.test(0.05*1e6, 1e6, alternative="less")[["conf.int"]][2], 5)
[1] 0.05036
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
Helmut Schütz
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- Virtual Bioequivalence: a myth or coming reality? mittyri 2018-06-09 22:39
- Virtual Bioequivalence: a myth or coming reality? jag009 2018-06-13 02:40
- Virtual Bioequivalence: a myth or coming reality? elba.romero 2018-10-19 01:17
- Virtual Bioequivalence: an update from PAGE (+TSD!) mittyri 2019-06-21 13:50
- FDA not concerned about the type I error?Helmut 2019-06-22 18:11
- Virtual Bioequivalence: a myth or coming reality? Helmut 2021-12-23 22:31
- Synovia is a nasty beast mittyri 2021-12-24 13:23
- Synovia is a nasty beast dshah 2022-01-10 15:31
- Synovia is a nasty beast mittyri 2021-12-24 13:23
- Virtual Bioequivalence: a myth or coming reality? Helmut 2022-02-17 12:06