“Average” plots [NCA / SHAM]

posted by Helmut Homepage – Vienna, Austria, 2019-04-25 21:06 (2046 d 21:51 ago) – Posting: # 20235
Views: 7,002

Dear all,

following this thread and esp. this post I hijacked Mittyri’s simulation code another time. As nobody rightly wrote

❝ Statistics is always some kind of abstraction.


Why are we using average* plots at all? The complete information is contained in spaghetti plots but Ohlbe remarked

❝ I find spaghetti plots rather difficult to read with more than 30 subjects, or even less depending on what they look like…


So which kind of average plot would allow a significant data reduction (one line per treatment) instead of one for every subject? Ideally it should convey unbiased information. I simulated 1,000 subjects and calculated averages as described there. It set the “LLOQ” of the method to 2% of the theoretical Cmax. If a concentration was calculated as BQL, I set it to NA. At the end I compared the averages with the theoretical concentrations at all time points i, i.e., calculated \(\small{\%RE=100\big{(}(\bar{x}_i-C_i)/C_i\big{)}}\). Plotting \(\small{\%RE}\) vs. \(\small{t}\) should give an idea which one to choose. I tried two flavors:
  1. If the theoretical concentration C would be <LLOQ I forced it to NA.
  2. I used it ‘as is’, which means that at 16 and 24 hours it is still used though it is far below the LLOQ.
Outcome:
  1. All methods based on the arithmetic mean are terrible. Nothing new. The median where BQLs are imputed with LLOQ/2 seems to be the winner (always a moderate negative bias). Since the theoretical concentrations are BQL after 12 hours, no comparison possible.

    [image]

  2. Pretty similar but all go through the ceiling. Useless but gives an idea that we should take average curves in the terminal phase approaching the LLOQ with a grain of salt.

    [image]




[image]-script
C <- function(F=1, D, Vd, ka, ke, t) {
  C <- F*D/Vd*(ka/(ka - ke))*(exp(-ke*t) - exp(-ka*t))
  return(C)
}
loc.stat <- function(x, type, na.rm) {
  non.numerics    <- which(is.na(suppressWarnings(as.numeric(x))))
  x[non.numerics] <- NA
  x <- as.numeric(x)
  switch(type,
         arith.mean = round(mean(x, na.rm=na.rm), 2),
         median     = round(median(x, na.rm=na.rm), 2),
         geom.mean  = round(exp(mean(log(x), na.rm=na.rm)), 2))
}
Nsub     <- 1000
D        <- 400
ka       <- 1.39
ka.omega <- 0.1
Vd       <- 1
Vd.omega <- 0.2
CL       <- 0.347
CL.omega <- 0.15
t        <- c(seq(0, 1, 0.25), seq(2,6,1), 8,10,12,16,24)
ke       <- CL/Vd
C.th     <- C(D=D, Vd=Vd, ka=ka, ke=ke, t=t)
tmax     <- log((ka/ke)/(ka - ke))
Cmax     <- C(D=D, Vd=Vd, ka=ka, ke=ke, t=tmax)
LLOQ.pct <- 2 # LLOQ = 2% of theoretical Cmax
LLOQ     <- Cmax*LLOQ.pct/100
df1      <- data.frame(t=t)
for (j in 1:Nsub) {
  ka.sub <- ka * exp(rnorm(1, sd = sqrt(ka.omega)))
  Vd.sub <- Vd * exp(rnorm(1, sd = sqrt(Vd.omega)))
  CL.sub <- CL * exp(rnorm(1, sd = sqrt(CL.omega)))
  df1    <- cbind(df1, C(D=D, Vd=Vd.sub, ka=ka.sub, ke=CL.sub/Vd.sub, t=t))
  df1[which(df1[, j+1] < LLOQ), j+1] <- NA
}
names(df1)[2:(Nsub+1)] <- paste0("S.", 1:Nsub)
df2 <- data.frame(t(df1[-1]))
colnames(df2) <- df1[, 1] names(df2) <- t
loc <- data.frame(method=c("arithm.mean (BQL excluded)",
                           "arithm.mean (BQL => 0)",
                           "arithm.mean (BQL => 0, NA if <LLOQ)",
                           "arithm.mean (BQL => LLOQ/2)",
                           "geom.mean (BQL excluded)",
                           "geom.mean (BQL => LLOQ/2)",
                           "geom.mean (if at least 2/3 >= LLOQ)",
                           "median (BQL excluded)",
                           "median (BQL => LLOQ/2)"),
                  t.1=NA, t.2=NA, t.3=NA, t.4=NA, t.5=NA, t.6=NA, t.7=NA,
                  t.8=NA, t.9=NA, t.10=NA, t.11=NA, t.12=NA, t.13=NA, t.14=NA,
                  t.15=NA, stringsAsFactors=FALSE)
names(loc)[2:16] <- t
for (j in 2:(ncol(df2)+1)) {
   x <- df2[, j-1]
   loc[1, j] <- loc.stat(x, "arith.mean", TRUE)
   y <- x
   y[which(is.na(x))] <- 0
   loc[2, j] <- loc.stat(y, "arith.mean", FALSE)
   ifelse(loc[2, j] >= LLOQ, loc[3, j] <- loc[2, j], loc[3, j] <- NA)
   y <- x
   y[which(is.na(x))] <- LLOQ/2
   loc[4, j] <- loc.stat(y, "arith.mean", FALSE)
   loc[5, j] <- loc.stat(x, "geom.mean", TRUE)
   loc[6, j] <- loc.stat(y, "geom.mean", FALSE)
   if (length(which(!is.na(x))) >= nrow(df2)*2/3) {
      loc[7, j] <- loc[5, j]
   } else {
      loc[7, j] <- NA
   }
   loc[8, j] <- loc.stat(x, "median", TRUE)
   loc[9, j] <- loc.stat(y, "median", FALSE)
}
err2 <- err1 <- loc
C <- C.th
C[C.th < LLOQ] <- NA
for (j in 1:nrow(loc)) {
   err1[j, 2:ncol(err1)] <- signif(100*(loc[j, 2:ncol(loc)]-C)/C, 4)
}
C <- C.th
for (j in 1:nrow(loc)) {
   err2[j, 2:ncol(err2)] <- signif(100*(loc[j, 2:ncol(loc)]-C)/C, 4)
}
print(err1, row.names=FALSE);print(err2, row.names=FALSE)
clr <- c("black", "blue", "pink", "red", "darkgreen",
         "gray50", "magenta", "orange", "gold")
dev.new(record=TRUE)
plot(x=t, y=rep(0, length(t)), type="n", xlim=range(t),
     ylim=range(err1[, 2:16], na.rm=TRUE), xlab="time",
     ylab="% error", las=1)
grid(); rug(t)
for (j in 1:nrow(err1)) {
  lines(jitter(t, factor=1.5), err1[j, 2:ncol(err1)], col=clr[j], lwd=2)
}
legend("topright", bg="white", inset=0.02, title="method",
       legend=loc[, 1], lwd=2, col=clr, cex=0.65)
plot(x=t, y=rep(0, length(t)), type="n", xlim=range(t),
     ylim=range(err1[, 2:16], na.rm=TRUE), xlab="time",
     ylab="% error", las=1)
grid(); rug(t)
for (j in 1:nrow(err2)) {
  lines(jitter(t, factor=1.5), err2[j, 2:ncol(err2)], col=clr[j], lwd=2)
}
legend("topright", bg="white", inset=0.02, title="method",
       legend=loc[, 1], lwd=2, col=clr, cex=0.65)

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,328 posts in 4,898 threads, 1,662 registered users;
63 visitors (0 registered, 63 guests [including 7 identified bots]).
Forum time: 17:57 CET (Europe/Vienna)

Satisfaction of one’s curiosity is one of the greatest sources
of happiness in life.    Linus Pauling

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5