Example [Bioanalytics]

posted by Helmut Homepage – Vienna, Austria, 2019-03-17 02:56 (2216 d 19:28 ago) – Posting: # 20043
Views: 6,970

Hi ElMaestro,

played with an example of a study I have on my desk. Chiral GC/MS, quadratic model, w=1/x2.

ObjF1 <- function(x) {
  w <- 1/Conc^x
  M <- lm(Ratio ~ Conc + I(Conc^2), weights=w)
  return(sum(abs(resid(M)/Conc)))
}
ObjF2 <- function(x) {
  w <- 1/Ratio^x
  M <- lm(Ratio ~ Conc + I(Conc^2), weights=w)
  return(sum(abs(resid(M)/Conc)))
}
IC <- function(m, n) {
  return(list(AIC=signif(extractAIC(m, k=2)[2],5),
              BIC=signif(extractAIC(m, k=log(n))[2]),5))
}
Acc <- function(m, x, y) {
  if (coef(m)[[3]] == 0) stop("panic!")
  if (coef(m)[[3]] < 0 {
    return(100*(-(coef(m)[[2]]/2/coef(m)[[3]] +
                  sqrt((coef(m)[[2]]/2/coef(m)[[3]])^2-
                       (coef(m)[[1]]-y)/coef(m)[[3]])))/x)
  } else {
    return(100*(-(coef(m)[[2]]/2/coef(m)[[3]] -
                  sqrt((coef(m)[[2]]/2/coef(m)[[3]])^2-
                       (coef(m)[[1]]-y)/coef(m)[[3]])))/x)
  }
}
Conc  <- c(0.1, 0.1, 0.3, 0.3, 0.9, 0.9, 2, 2, 6, 6, 12, 12, 24, 24)
Ratio <- c(0.022, 0.024, 0.073, 0.068, 0.193, 0.204, 0.438, 0.433,
           1.374, 1.376, 2.762, 2.732, 5.616, 5.477)
n     <- length(Conc)
w.x1  <- 1/Conc
w.x2  <- 1/Conc^2
x.opt <- optimize(ObjF1,  c(0, 10))$minimum
w.xo  <- 1/Conc^x.opt
w.y1  <- 1/Ratio
w.y2  <- 1/Ratio^2
y.opt <- optimize(ObjF2,  c(0, 10))$minimum
w.yo  <- 1/Ratio^x.opt
dupl  <- sum(duplicated(Conc))
var   <- n/2
for (j in 1:dupl) {
  var[j] <- var(c(Ratio[j], Ratio[j+1]))
}
w.var <- 1/rep(var, each=2)
m.1   <- lm(Ratio ~ Conc + I(Conc^2))
m.2   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.x1)
m.3   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.x2)
m.4   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.xo)
m.5   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.y1)
m.6   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.y2)
m.7   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.yo)
m.8   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.var)
mods  <- c("w=1", "w=1/x", "w=1/x^2", "w=1/x^opt",
           "w=1/y", "w=1/y^2", "w=1/y^opt", "w=1/sd.y^2")
AIC   <- c(IC(m.1, n=n)$AIC, IC(m.2, n=n)$AIC, IC(m.3, n=n)$AIC, IC(m.4, n=n)$AIC,
           IC(m.5, n=n)$AIC, IC(m.6, n=n)$AIC, IC(m.7, n=n)$AIC, IC(m.8, n=n)$AIC)
BIC   <- c(IC(m.1, n=n)$BIC, IC(m.2, n=n)$BIC, IC(m.3, n=n)$BIC, IC(m.4, n=n)$BIC,
           IC(m.5, n=n)$BIC, IC(m.6, n=n)$BIC, IC(m.7, n=n)$BIC, IC(m.8, n=n)$BIC)
res1  <- data.frame(model=mods, exp=signif(c(0:2, x.opt, 1:2, y.opt, NA),5),
                    AIC=signif(AIC,5), BIC=signif(BIC,5))
res2  <- data.frame(Conc=Conc,
                    Acc(m=m.1, x=Conc, y=Ratio), Acc(m=m.2, x=Conc, y=Ratio),
                    Acc(m=m.3, x=Conc, y=Ratio), Acc(m=m.4, x=Conc, y=Ratio),
                    Acc(m=m.5, x=Conc, y=Ratio), Acc(m=m.6, x=Conc, y=Ratio),
                    Acc(m=m.7, x=Conc, y=Ratio), Acc(m=m.8, x=Conc, y=Ratio))
names(res2) <- c("Conc", mods)
cat("\nAkaike & Bayesian Information Critera (smaller is better)\n");print(res1);cat("\nAccuracy (%)\n");print(round(res2, 2), row.names=F)


I got:

Akaike & Bayesian Information Critera (smaller is better)
       model    exp      AIC      BIC
1        w=1 0.0000  -94.099  -92.181
2      w=1/x 1.0000 -127.480 -125.560
3    w=1/x^2 2.0000 -131.720 -129.800

4  w=1/x^opt 1.3355 -132.920 -131.010
5      w=1/y 1.0000 -106.670 -104.750
6    w=1/y^2 2.0000  -90.571  -88.654
7  w=1/y^opt 2.5220 -105.150 -103.230

8 w=1/sd.y^2     NA   62.387   64.304

Accuracy (%)
 Conc    w=1  w=1/x w=1/x^2 w=1/x^opt  w=1/y w=1/y^2 w=1/y^opt w=1/sd.y^2
  0.1 115.66  96.07   94.53     94.63  96.48   94.95     95.02      99.04
  0.1 124.45 104.96  103.49    103.56 105.37  103.93    103.96     107.83
  0.3 113.24 107.57  107.64    107.46 107.74  107.97    107.65     107.71
  0.3 105.92 100.17  100.18    100.02 100.33  100.49    100.21     100.39
  0.9  96.30  95.06   95.52     95.29  95.14   95.77     95.41      94.46
  0.9 101.66 100.48  100.98    100.74 100.56  101.24    100.86      99.83
  2.0  97.07  97.06   97.63     97.40  97.12   97.85     97.49      96.25
  2.0  95.97  95.96   96.51     96.29  96.01   96.74     96.38      95.15
  6.0 100.54 101.06  101.53    101.37 101.10  101.71    101.43     100.29
  6.0 100.69 101.21  101.68    101.51 101.24  101.85    101.58     100.44
 12.0 100.48 100.86  101.08    101.03 100.89  101.18    101.07     100.38
 12.0  99.40  99.78  100.01     99.95  99.81  100.10     99.99      99.30
 24.0 101.23 101.10  100.81    100.98 101.10  100.75    100.98     101.23
 24.0  98.77  98.66   98.40     98.56  98.67   98.35     98.56      98.77


Hey, yours with w=1/x1.3355 is the winner! Duno why the ICs of 1/sy² are that bad. Coding error? The accuracy looks fine. Try a plot:

plot(Conc, Ratio, type="n", log="xy", las=1)
points(Conc, Ratio, pch=21, cex=1.5, col="blue", bg="#CCCCFF80")
curve(coef(m.4)[[1]]+coef(m.4)[[2]]*x+coef(m.4)[[3]]*x^2, range(Conc),
      lwd=2, col="darkgreen", add=TRUE)
curve(coef(m.8)[[1]]+coef(m.8)[[2]]*x+coef(m.8)[[3]]*x^2, range(Conc),
      lwd=2, col="red", add=TRUE)

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,422 posts in 4,927 threads, 1,670 registered users;
24 visitors (0 registered, 24 guests [including 12 identified bots]).
Forum time: 23:25 CEST (Europe/Vienna)

To know the history of science is to recognize the mortality
of any claim to universal truth.    Evelyn Fox Keller

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5