PowerTOST / Power2Stage [R for BE/BA]

posted by Helmut Homepage – Vienna, Austria, 2018-10-31 11:08  – Posting: # 19507
Views: 698

Hi fyy…,

» […] why there is not selection for 3-ways crossover design in sample size estimate.

Simple: Yung-jin didn’t implement it. ;-)

» If there are other soft could estimate sample size for 3-ways crossover design?

I recommend package PowerTOST.1 These designs are currently supported:
  1. 2 parallel groups (T|R)
  2. Paired means (TR or RT)
  3. 2×2×2 crossover (TR|RT)
  4. 3×3 crossover (Latin Squares ABC|BCA|CAB)
  5. 3×6×3 crossover (Williams’ design: ABC|ACB|BAC|BCA|CAB|CBA)
  6. 4×4 crossover (Latin Squares: ABCD|BCDA|CDAB|DABC or any of the Williams’ designs)
  7. 2×2×3 full replicate (TRT|RTR)
  8. 2×2×4 full replicate (TRTR|RTRT)
  9. 2×4×4 full replicate (TRTR|RTRT|TTRR|RRTT)
  10. 2×3×3 partial replicate (TRR|RTR|RRT)
  11. 2×4×2 full replicate (Balaam’s design: TR|RT|TT|RR)
  12. 2×2×2r (Liu’s repeated crossover)
Sample size / power for average bioequivalence (ABE) is provided for all designs. Reference-scaling for the FDA’s method (RSABE) and the EMA’s / WHO’s / Health Canada’s method (ABEL) is implemented (#VII–XII) as is the FDA’s for NTIDs (#VII–VIII). Note that simulations are required for all reference-scaling methods. Dose proportionality according to the power model and one-sided tests (for non-inferiority or non-superiority) are implemented as well.

In most functions power can be calculated by the shifted t-distribution (crude approximation), the noncentral t-distribution (like in bear), or exact methods (preferred). Details in the online manual.

Example for a 3×3 design:

sampleN.TOST(CV=0.2, theta0=0.95, targetpower=0.8, design="3x3x3")


+++++++++++ Equivalence test - TOST +++++++++++
            Sample size estimation
Study design:  3x3 crossover
log-transformed data (multiplicative model)

alpha = 0.05, target power = 0.8
BE margins = 0.8 ... 1.25
True ratio = 0.95,  CV = 0.2

Sample size (total)
 n     power
18   0.808949

If you are not assuming a common variance for all pairwise comparions (very good idea: see there) estimate the sample size for the common 2×2×2 design instead:

sampleN.TOST(CV=0.2, theta0=0.95, targetpower=0.8, design="2x2x2")

+++++++++++ Equivalence test - TOST +++++++++++
            Sample size estimation
Study design:  2x2 crossover
log-transformed data (multiplicative model)

alpha = 0.05, target power = 0.8
BE margins = 0.8 ... 1.25
True ratio = 0.95,  CV = 0.2

Sample size (total)
 n     power
20   0.834680

If you are interested in Two-Stage Designs (group-sequential and adaptive TSDs with sample size re-estimation: parallel groups and 2×2×2 crossovers) consider package Power2Stage.2 Online manual.

  1. Labes D, Schütz H, Lang B. PowerTOST: Power and Sample Size Based on Two One-Sided t-Tests (TOST) for (Bio)Equivalence Studies. 2018-04-12: version 1.4-7. CRAN, GitHub.
  2. Labes D, Lang B, Schütz H. Power2Stage: Power and Sample-Size Distribution of 2-Stage Bio­equivalence Studies. 2018-04-03: version 0.5-1. CRAN, GitHub.

Helmut Schütz

The quality of responses received is directly proportional to the quality of the question asked. ☼
Science Quotes

Complete thread:

 Mix view
Bioequivalence and Bioavailability Forum |  Admin contact
19,486 posts in 4,135 threads, 1,334 registered users;
online 10 (0 registered, 10 guests [including 7 identified bots]).
Forum time (Europe/Vienna): 23:23 CEST

If you don’t know anything about computers,
just remember that they are machines that do exactly what you tell them
but often surprise you in the result.    Richard Dawkins

BEBAC Ing. Helmut Schütz