111.11 for NTIDs [Power / Sample Size]
Hi Astea,
Yep, I’ve been there.
Like 111.11. Every idiot should see that \(\sqrt{0.9\times 0.9^{-1}}=\sqrt{0.9/0.9}=1\) which is not the fucking same as
\(\sqrt{0.9\times 1.1111}=0.9999949999874999374996093722656\ldots\)
In R-speak:
Heck, we want the acceptance range in log-scale to be symmetrical around Zero and not –5·10–6.
❝ ❝ I’m not willing to accept 111.11%. Heck, with an acceptable ∆ of 10% we get \(100(1-\Delta)^{-1}=111.1\dot{1}\) – nothing else! I will not forget my second-grade math only cause it’s claimed ex cathedra by the oracle. Had to swallow already rounding of the CI. Double rounding? Gimme a break!
❝ Then why do we use 80,00? "Because in the former case the numbers look nicer and are easier to remember
Yep, I’ve been there.
❝ Of course 111.00 is nonsense and should be forgotten.
Like 111.11. Every idiot should see that \(\sqrt{0.9\times 0.9^{-1}}=\sqrt{0.9/0.9}=1\) which is not the fucking same as
\(\sqrt{0.9\times 1.1111}=0.9999949999874999374996093722656\ldots\)
In R-speak:
identical(sqrt(0.9*0.9^-1), 1)
[1] TRUE
identical(sqrt(0.9*1.1111), 1)
[1] FALSE
Heck, we want the acceptance range in log-scale to be symmetrical around Zero and not –5·10–6.

—
Dif-tor heh smusma 🖖🏼 Довге життя Україна!![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- Sample size for 4-period 4-sequence crossover BE study Bryony Simmons 2018-02-01 12:16 [Power / Sample Size]
- function sampleN.TOST of package PowerTOST Helmut 2018-02-01 13:01
- Alpha adjustment in higher order crossover d_labes 2018-02-01 14:01
- Deficiencies Helmut 2018-02-01 15:48
- Deficiencies nobody 2018-02-01 17:10
- Deficiencies d_labes 2018-02-01 18:57
- Deficiencies Relaxation 2018-02-02 11:12
- Deficiencies nobody 2018-02-02 12:49
- Deficiencies Helmut 2018-02-02 16:14
- Deficiencies Relaxation 2018-02-02 19:41
- alpha... where is omega? Astea 2018-02-02 21:45
- α and no ω Helmut 2018-02-02 23:39
- TIE for NTIDs d_labes 2018-02-04 12:40
- TIE for NTIDs Astea 2018-02-04 20:04
- TIE for NTIDs Helmut 2018-02-05 01:01
- TIE for NTIDs d_labes 2018-02-05 16:40
- TIE for NTIDs Helmut 2018-02-05 17:49
- TIE for NTIDs d_labes 2018-02-05 22:17
- TIE for NTIDs Helmut 2018-02-06 12:34
- TIE for NTIDs d_labes 2018-02-05 22:17
- TIE for NTIDs Helmut 2018-02-05 17:49
- TIE for NTIDs d_labes 2018-02-05 16:40
- TIE for NTIDs d_labes 2018-02-05 16:35
- bow TIE for NTIDs Astea 2018-02-05 17:52
- bow TIE for NTIDs Helmut 2018-02-05 18:10
- 111.11 for NTIDs Astea 2018-02-05 19:27
- 111.11 for NTIDsHelmut 2018-02-06 00:12
- 111.11 for NTIDs Astea 2018-02-05 19:27
- bow TIE for NTIDs d_labes 2018-02-05 22:33
- bow TIE for NTIDs Helmut 2018-02-05 18:10
- bow TIE for NTIDs Astea 2018-02-05 17:52
- TIE for NTIDs Helmut 2018-02-05 01:01
- TIE for NTIDs Astea 2018-02-04 20:04
- TIE for NTIDs d_labes 2018-02-04 12:40
- α and no ω Helmut 2018-02-02 23:39
- alpha... where is omega? Astea 2018-02-02 21:45
- Deficiencies Relaxation 2018-02-02 19:41
- Deficiencies Relaxation 2018-02-02 11:12
- Deficiencies Helmut 2018-02-01 15:48
- Alpha adjustment in higher order crossover d_labes 2018-02-01 14:01
- function sampleN.TOST of package PowerTOST Helmut 2018-02-01 13:01