Initial sample size guess for the Potvin methods [Two-Stage / GS Designs]

posted by ElMaestro  – Belgium?, 2017-08-19 13:04  – Posting: # 17709
Views: 24,305

Hi all,

just wanted to share a little algo for the initial sample size guess for the Potvin methods.
This is an area where speed gains are possible. A good initial sample size guess can eliminate quite some computation time. As I never got Zhang's method I played a little around with an entirely empirical idea.

My idea is that at least the upper part of a curve of power as function of sample size can be modeled as a kind of sigmoid function. I googled around to find a few expressions for such curves. The logistic function is one such. We can write the approximation something like:
Power=1/(1+exp(-k(N-x0)))

where N is the sample size.

If we have two estimates of power p1, p2 at sample sizes nps1 and nps2 (I use number of subjects per sequence, abbreviated as nps), then we can determine the constants:
a2=log(1/p2 - 1)
a1=log(1/p1 - 1)
x0=(a2*nps1-a1*nps2)/(a2-a1)
k=a1/(x0-nps1)


We can then solve for the desired power Pwr.T:
nps= x0+ (log(1/Pwr.T -1) / (-k))
- and this should of course converted to integer.

It turns out in my application to work really, really well.
The "only" issue is if the initial nps1 and nps2 are chosen poorly; p1 needs to be "not too close" to zero and p2 needs to be "not too close" to 1. But that's it.
My current implementation is this:

GetStartNps.X3=function(GMR, CV, Pwr.T)
{
  nps1=6
  p1=Power.calc(nps1, GMR, CV, Is.St2=1)  ##equation in Potvin et al.
  for (i in 1:3)
   if (p1<0.1) { nps1=4*nps1;p1=Power.calc(nps1, GMR, CV, Is.St2=1);}

  nps2=20*nps1
  p2=Power.calc(nps2, GMR, CV, Is.St2=1)
  f=2.4
  while(p2>0.99) { nps2=floor(nps2/f);p2=Power.calc(nps2, GMR, CV, Is.St2=1);}

  a2=log(1/p2 - 1)
  a1=log(1/p1 - 1)
  x0=(a2*nps1-a1*nps2)/(a2-a1)
  k=a1/(x0-nps1)
  Nps=floor(    x0+ (log(1/Pwr.T -1) / (-k))     )
  if (Nps<6) Nps=6
  return(Nps)
}


Works well for me for assumed GMR's close to 1 (such as 0.95) and I am sure if anyone cares to fiddle with it it can be improved much, much further to work well in "all" scenarios. Play around with the constants in red to get the optimization that works for you.:-)

I could be wrong, but...
Best regards,
ElMaestro

Complete thread:

Activity
 Admin contact
20,128 posts in 4,245 threads, 1,384 registered users;
online 32 (0 registered, 32 guests [including 8 identified bots]).
Forum time (Europe/Vienna): 22:05 UTC

You really don’t know what you don’t know until you write about it.
Then, everyone knows what you don’t know.    Rod Machado

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5