Don’t use the formula by Chow, Shao, Wang! [Power / Sample Size]
❝ […] on page 260 there is also another mistake, since z0.10 is 1.28 and not 0.84, so according to the reduced formula, 28 subjects per sequence would be necessary and not the reported 21.
Yep, I noticed that as well.

BTW, z0.05 is 1.64 and not 1.96. In all its “beauty”:
delta <- log(1.25)
epsilon <- 0.05
sigma1.1 <- 0.40
z.05 <- qnorm(0.05, lower.tail=FALSE)
z.10 <- qnorm(0.10, lower.tail=FALSE)
(z.05+z.10)^2*sigma1.1^2/(2*(delta-epsilon)^2)
[1] 22.85316
Of course,
PowerTOST
contains the large sample approximation based on z as well (by an internal and hence, undocumented) function.library(PowerTOST)
CV <- seq(0.15, 0.8, 0.025)
n <- data.frame(CV=CV, exact=rep(NA, length(CV)),
nc.t=rep(NA, length(CV)),
shifted.t=rep(NA, length(CV)),
normal=rep(NA, length(CV)),
row.names=NULL)
for (j in seq_along(CV)) {
# exact method (Owen's Q)
n[j, 2] <- sampleN.TOST(CV=CV[j], theta0=0.95, theta1=0.8,
theta2=1.25, targetpower=0.8,
method="exact", print=FALSE)[["Sample size"]]
# approximation by the noncentral t-distribution
n[j, 3] <- sampleN.TOST(CV=CV[j], theta0=0.95, theta1=0.8,
theta2=1.25, targetpower=0.8,
method="nct", print=FALSE)[["Sample size"]]
# approximation by the shifted central t-distribution
n[j, 4] <- sampleN.TOST(CV=CV[j], theta0=0.95, theta1=0.8,
theta2=1.25, targetpower=0.8,
method="shifted",
print=FALSE)[["Sample size"]]
# (large sample) approximation by the normal distribution
n[j, 5] <- PowerTOST:::.sampleN0(se=CV2se(CV[j]), diffm=log(0.95),
ltheta1=log(0.8), ltheta2=log(1.25),
targetpower=0.8)
}
print(n, row.names=FALSE)
CV exact nc.t shifted.t normal
0.150 12 12 12 10
0.175 16 16 16 12
0.200 20 20 20 16
0.225 24 24 24 20
0.250 28 28 28 26
0.275 34 34 34 30
0.300 40 40 40 36
0.325 46 46 46 42
0.350 52 52 52 48
0.375 58 58 60 56
0.400 66 66 66 62
0.425 74 74 74 70
0.450 82 82 82 78
0.475 90 90 90 86
0.500 98 98 98 94
0.525 106 106 108 102
0.550 116 116 116 110
0.575 126 126 126 120
0.600 134 134 134 128
0.625 144 144 144 138
0.650 154 154 154 148
0.675 164 164 164 158
0.700 174 174 174 166
0.725 184 184 184 176
0.750 194 194 194 186
0.775 204 204 204 196
0.800 214 214 216 208
![[image]](img/uploaded/image470.png)
Power2Stage
for speed reasons (~40 times faster than Owen’s Q).The shifted central t is also good. Only in a few cases higher sample sizes. Conservative, no worries.
The large sample size approximation sucks. Always smaller sample sizes than with the other methods, power compromised – unless one dares to submit a study evaluated by z.

Quoting from a conversation with an eminent regulator of the Iberian Peninsula:
“Frankly between z and t methods the difference is ridiculous when variability is not large and later a few subjects is added to compensate drop-outs. I do not see any problem in using z-method. I use it because it is very straightforward in Excel and there is no need to have special software.”
Well, cough…Brain-dead. 38.9 ℃ and rising, no AC in my office…
![[image]](img/uploaded/image469.png)
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- sample size in bioequivalence studies daryazyatina 2017-08-03 09:34 [Power / Sample Size]
- sample size in bioequivalence studies BE-proff 2017-08-03 09:55
- sample size in bioequivalence studies daryazyatina 2017-08-03 10:08
- sample size in bioequivalence studies ElMaestro 2017-08-03 10:17
- sample size in bioequivalence studies daryazyatina 2017-08-03 10:58
- sample size in bioequivalence studies DavidManteigas 2017-08-03 12:40
- sample size in bioequivalence studies daryazyatina 2017-08-03 13:46
- Don’t use the formula by Chow, Shao, Wang! Helmut 2017-08-03 15:37
- Don’t use the formula by Chow, Shao, Wang! daryazyatina 2017-08-03 15:52
- Don’t use the formula by Chow, Shao, Wang! DavidManteigas 2017-08-03 16:12
- Don’t use the formula by Chow, Shao, Wang!Helmut 2017-08-03 16:33
- Don’t use the Book by Chow, Shao, Wang! d_labes 2017-08-16 16:01
- compromised power Helmut 2017-08-03 16:04
- compromised power daryazyatina 2017-08-04 08:15
- terminology Helmut 2017-08-04 12:41
- terminology daryazyatina 2017-08-16 10:12
- terminology Helmut 2017-08-16 18:54
- terminology daryazyatina 2017-08-16 10:12
- terminology Helmut 2017-08-04 12:41
- compromised power daryazyatina 2017-08-04 08:15
- sample size in bioequivalence studies DavidManteigas 2017-08-03 12:40
- sample size in bioequivalence studies daryazyatina 2017-08-03 10:58
- sample size in bioequivalence studies balinskyi 2018-06-03 12:58
- sample size in bioequivalence studies BE-proff 2017-08-03 09:55