RSABE ⇒ ABEL [General Statistics]
❝ I have limited data about partial replicate trial (2x3x3) with RSABE, which I want to use to assess the feasibility of same study under EMA regulation (assuming that EU has the same Reference product as US).
❝ Reported parameters:
❝ Number of subjects (observations per treatment arm)
❝ Swr estimated using PROC GLM
❝ Point Estimate (%) from RSABE-approach
❝ […]
❝ Is it feasible to try calculation of 90% CIs?
Yes.
❝ Can I apply the formula below?
❝ 90% CI = log(Point_Estimate) +/- Swr * qt(0.05, df))*100,
No (see this post). Let’s compare the EMA’s Q&A dataset II (n = 24; n1 = n2 = n3 = 8), evaluated by the FDA’s RSABE (PE = 1.022644, swR = 0.11397298) with results of the EMA’s methods: PE 102.26%; 90% CI: Methods A/B 97.32–107.46%, Method C 97.05–107.76%.
n <- c(8, 8, 8)
pe <- 1.022644
swR <- 0.11397298
CI <- exp(log(pe) + c(-1, +1)*qt(1-0.05, 2*sum(n)-3)*sqrt(1/6*swR^2*sum(1/n)))
names(CI) <- c("lower", "upper")
round(100*CI, 2)
# lower upper
# 97.49 107.28
library(PowerTOST)
round(100*CI.BE(pe=pe, CV=se2CV(swR), n=n, design="2x3x3"), 2)
# lower upper
# 97.49 107.28
Pretty close but in this case (swR <0.294) the FDA requires a mixed-effects model for ABE, where s²wR = 0.013246498 (PE 102.26%, 90% CI 97.05–107.76%). Hence, we have to take that into account.
library(PowerTOST)
n <- c(8, 8, 8)
pe <- 1.022644
s2wR <- 0.013246498
round(100*CI.BE(pe=pe, CV=mse2CV(s2wR), n=n, design="2x3x3", robust=TRUE), 2)
# lower upper
# 97.32 107.46
CI <- exp(log(pe) + c(-1, +1)*qt(1-0.05, sum(n)-3)*sqrt(1/6*s2wR*sum(1/n)))
names(CI) <- c("lower", "upper")
round(100*CI, 2)
# lower upper
# 97.32 107.46
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- Confidence Interval for Transformed data Unbalanced study usfda_emea 2007-03-06 14:39 [General Statistics]
- CI for Transformed data Unbalanced study Helmut 2007-03-06 16:46
- CI for Transformed data Unbalanced study drshiv 2007-03-06 18:49
- CI for Transformed data Unbalanced study usfda_emea 2007-03-07 06:21
- CI for Transformed data Unbalanced study Helmut 2007-03-07 12:04
- CI for Transformed data Unbalanced study usfda_emea 2007-03-07 12:34
- CI for Transformed data Unbalanced study Ohlbe 2014-07-30 15:04
- LSM limbo Helmut 2014-07-31 02:54
- LSM limbo Ohlbe 2014-07-31 09:47
- 90% CI limbo VStus 2017-03-01 14:07
- RSABE ⇒ ABELHelmut 2017-03-03 13:34
- RSABE ⇒ ABEL VStus 2017-03-03 15:31
- s2wR != mse, FDA != EMA d_labes 2017-03-04 14:49
- s2wR != mse, FDA != EMA ElMaestro 2017-03-04 19:13
- s2wR from ISC in FDA approach d_labes 2017-03-05 12:18
- s2wR from ISC in FDA approach ElMaestro 2017-03-05 13:50
- s2wR from ISC in FDA approach d_labes 2017-03-05 12:18
- s2wR != mse, FDA != EMA VStus 2017-03-04 21:41
- s2wR != mse, FDA != EMA Helmut 2017-03-06 13:40
- s2wR != mse, FDA != EMA ElMaestro 2017-03-04 19:13
- s2wR != mse, FDA != EMA d_labes 2017-03-04 14:49
- RSABE ⇒ ABEL VStus 2017-03-03 15:31
- RSABE ⇒ ABELHelmut 2017-03-03 13:34
- LSM limbo Helmut 2014-07-31 02:54
- CI for Transformed data Unbalanced study Helmut 2007-03-07 12:04
- CI for Transformed data Unbalanced study Helmut 2007-03-06 16:46