FDA group model in R [Two-Stage / GS Designs]

posted by VStus – Poland, 2016-10-17 17:32 (3185 d 06:03 ago) – Posting: # 16730
Views: 40,155

Dear mittyri,
Dear zizou,

❝ The ANOVA type I is the same as in PHX, but PE and CIs are not. I'm in stuck....


Thank you very much for your help!

I have checked proposed model formula in R's lm() versus SAS output of some old study report with unbalanced dataset.
I found perfect much here for group*treatment!

1. Analysis started as FDA Group Model 1:
> anovadata <- lm(log(data2$Cmax)~group+seq+seq*group+subj%in%(seq)+prd%in%group+drug+drug*group, data=data2, na.action=na.exclude)
> anova(anovadata)
Analysis of Variance Table

Response: log(data2$Cmax)
           Df Sum Sq Mean Sq F value Pr(>F)   
group       1   0.12   0.120    1.23  0.272   
seq         1   0.05   0.046    0.47  0.497   
drug        1   0.18   0.182    1.87  0.177   
group:seq   1   0.46   0.460    4.71  0.034 * 
seq:subj   59  25.25   0.428    4.38  3e-08 ***
group:prd   2   0.33   0.164    1.68  0.195   
group:drug  1   0.01   0.007    0.07  0.797   
Residuals  59   5.76   0.098

> drop1(anovadata, test="F")
Single term deletions

Model:
log(data2$Cmax) ~ group + seq + seq * group + subj %in% (seq) +
    prd %in% group + drug + drug * group
           Df Sum of Sq   RSS  AIC F value Pr(>F)   
<none>                   5.76 -255                   
group:seq   0      0.00  5.76 -255                   
seq:subj   59     25.25 31.01 -161    4.38  3e-08 ***
group:prd   2      0.32  6.09 -252    1.64    0.2   
group:drug  1      0.01  5.77 -256    0.07    0.8             


F and P values for group:drug are exactly the same as obtained by SAS:

Param   Source        DF  F Value   P-value      Model to be used:
lCmax   Group*Treat   1   0.07   0.7966   N.S.   Remove interaction


2. I've got same F and P values (at least for some of the effects) while proceeding to FDA Group Model 2 (or EMA's only model with all effects fixed), not mentioning exactly the same outputs for MSE/ Intra-subject CV and PE / 90%CIs :

> anovadata2 <- lm(log(data2$Cmax)~group+seq+seq*group+subj%in%(seq)+prd%in%group+drug, data=data2, na.action=na.exclude)
> drop1(anovadata2, test="F")
Single term deletions

Model:
log(data2$Cmax) ~ group + seq + seq * group + subj %in% (seq) +
    prd %in% group + drug
          Df Sum of Sq   RSS  AIC F value  Pr(>F)   
<none>                  5.77 -256                   
drug       1      0.21  5.98 -254    2.15    0.15   
group:seq  0      0.00  5.77 -256                   
seq:subj  59     25.25 31.02 -163    4.45 1.8e-08 ***
group:prd  2      0.33  6.10 -254    1.71    0.19


SAS output:
Param   Effect          DF   F Value   P-value
lCmax   Group           1    0.21      0.6475
lCmax   Seq             1    0.31      0.5822
lCmax   Group*Seq       1    1.08      0.3040
lCmax   Treat           1    2.15      0.1476
lCmax   Per(Group)      2    1.71      0.1896
lCmax   Subj(Group*Seq) 59   4.45      <.0001


Maybe lm() sometimes doing exactly the same as PROC GLM?
Regards, VStus

Complete thread:

UA Flag
Activity
 Admin contact
23,428 posts in 4,929 threads, 1,687 registered users;
82 visitors (0 registered, 82 guests [including 13 identified bots]).
Forum time: 23:35 CEST (Europe/Vienna)

No matter what side of the argument you are on,
you always find people on your side
that you wish were on the other.    Thomas Berger

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5