Owen’s Q | noncentral t | shifted central t [Design Issues]

posted by Helmut Homepage – Vienna, Austria, 2015-08-08 04:32 (3479 d 00:51 ago) – Posting: # 15196
Views: 11,749

Hi BE-proff,

❝ I have always thought that PASS calculates via simulation. Am I mistaken? :confused:


Yes. The documentation of PASS refers to Julious1 (see esp. pp1961–2). Given that, the approxi­ma­tion by the noncentral t-distribution is used. Example 2 from PASS’ manual: 2×2 crossover, target power 0.90, α 0.05, acceptance range 0.80–1.25, θ0 1, CV 0.25:

═══════════════════════════════════════════════════
                    n     power     method
═══════════════════════════════════════════════════
Table VII¹         28  ≥0.90     noncentral t
───────────────────────────────────────────────────
PASS 14            28   0.9023   noncentral t
───────────────────────────────────────────────────
PowerTOST 1.2-07   28   0.902260 exact
                   28   0.902260 noncentral t
                   30   0.918776 shifted central t
───────────────────────────────────────────────────
FARTSSIE 1.7       28   0.902260 noncentral t
───────────────────────────────────────────────────
StudySize 2.01     28   0.90221  ?
                   28   0.9045   10,000 simulations
                   28   0.9023   100,000 sim’s
                   28   0.9022   1,000,000 sim’s
                   28   0.9022   9,999,000 sim’s
───────────────────────────────────────────────────
EFG 2.01           28   0.9023   noncentral t
                   28   0.9008   10,000 sim’s
                   28   0.9026   100,000 sim’s
                   28   0.9023   1,000,000 sim’s
                   28   0.9024   9,999,000 sim’s
═══════════════════════════════════════════════════

For common ranges the noncentral t is a very good approximation of the exact method (Owen’s Q-func­tions)2. The latter were used in Diletti’s paper3. The shifted central t-distribution4 gives some­times lower power and therefore, higher samples sizes5. Unnecessarily conservative.
Only StudySize and ElMaestro’s EFG have the option to simulate studies (see here) which should asymp­totically approach the true value.


  1. Julious SA. Sample sizes for clinical trials with Normal data. Stat Med. 2004;23(12):1921–86. doi:10.1002/sim.1783.
  2. Owen DB. A special case of a bivariate non-central t-distribution. Biometrika. 1965;52(3/4):437–46. doi:10.1093/biomet/52.3-4.437.
  3. Diletti E, Hauschke D, Steinijans VW. Sample size determination for bioequivalence assessment by means of confidence intervals. Int J Clin Pharm Ther Toxicol. 1991;29(1):1–8. PMID 2004861.
  4. Kraemer HC, Paik M. A Central t Approximation to the Noncentral t Distribution. Technometrics. 1979;21(3):357–60. doi:10.1080/00401706.1979.10489781.
  5. Hauschke D, Steinijans VW, Diletti E, Burke M. Sample Size Determination for Bioequivalence Assessment Using a Multi­pli­ca­tive Model. J Pharmacokin Biopharm. 1992;20(5):557–61. PMID 1287202

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,380 posts in 4,914 threads, 1,665 registered users;
86 visitors (0 registered, 86 guests [including 7 identified bots]).
Forum time: 04:24 CET (Europe/Vienna)

When people learn no tools of judgment
and merely follow their hopes,
the seeds of political manipulation are sown.    Stephen Jay Gould

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5