lme() in bear [🇷 for BE/BA]

posted by yjlee168 Homepage – Kaohsiung, Taiwan, 2015-04-18 14:02 (3716 d 02:20 ago) – Posting: # 14699
Views: 29,698

Dear ElMaestro,

❝ No, take away an intercept.


I see.

❝ or equally good

log(Cmax) ~ 0 + drug + seq + prd <-- I pick this one.


  Statistical analysis (lme) - replicate BE study               
-------------------------------------------------
  Dependent Variable: ln(Cmax)                                           
Linear mixed-effects model fit by REML
 Data: inputdata
        AIC       BIC   logLik
  -174.2564 -153.2241 98.12818

Random effects:
 Formula: ~drug - 1 | subj
 Structure: General positive-definite, Log-Cholesky parametrization
         StdDev      Corr
drug1    0.149004555 drug1
drug2    0.122159678 0.15
Residual 0.007644172     

Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | drug
 Parameter estimates:
        1         2
1.0000000 0.4391939
Fixed effects: log(Cmax) ~ 0 + drug + seq + prd
          Value  Std.Error DF   t-value p-value
drug1  7.356274 0.05636146 38 130.51957  0.0000
drug2  7.420013 0.05152645 38 144.00398  0.0000
seq2   0.002664 0.05517303 13   0.04829  0.9622
prd2  -0.061700 0.04760132 38  -1.29618  0.2027
prd3  -0.059641 0.04760132 38  -1.25293  0.2179
prd4   0.003482 0.00164306 38   2.11917  0.0407


❝ order of effects has lexical importance and determines how many effect estimates you get per term. Accordingly, when you fit sequence as the first term you will not see one effect estimate for each drug.


Aha! Now I remember that. Thank you so much to refresh my memory. But now I don't know which one I should extract. :confused: What do you think?

All the best,
-- Yung-jin Lee
bear v2.9.2:- created by Hsin-ya Lee & Yung-jin Lee
Kaohsiung, Taiwan https://www.pkpd168.com/bear
Download link (updated) -> here
Thread locked

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,677 registered users;
39 visitors (0 registered, 39 guests [including 6 identified bots]).
Forum time: 16:22 CEST (Europe/Vienna)

Complex, statistically improbable things are by their nature
more difficult to explain than
simple, statistically probable things.    Richard Dawkins

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5