bear for 2x2x2 study with negative variance components [Software]

posted by yjlee168 Homepage – Kaohsiung, Taiwan, 2014-02-05 20:12 (4094 d 02:46 ago) – Posting: # 12349
Views: 28,069

(edited on 2014-02-06 08:02)

Dear all,

Using lme() to a 2x2x2 BE study, we can code with R (taking AUC0-t as example of the dataset in this thread) something like
modlnAUC0t<-lme(log(AUC0t) ~ drug + seq + prd,
               random=~1|subj/seq,
               data=blablabla, method="REML")
cat("\n")
print(summary(modlnAUC0t))
cat("\n")
cat("Type I Tests of Fixed Effects\n")
print(anova(modlnAUC0t)[2:4,])
cat("\n")
cat("Type III Tests of Fixed Effects\n")
print(anova(modlnAUC0t, type="marginal")[2:4,])
cat("\n\n")
...

Then outputs will be

Linear mixed-effects model fit by REML
 Data: blablabla
       AIC      BIC   logLik
  2.163918 10.41029 5.918041

Random effects:
 Formula: ~1 | subj
         (Intercept)
StdDev: 1.106768e-06   <- (1.11*10-6)2 ≈ 0 = V(subject(seq))

 Formula: ~1 | seq %in% subj
         (Intercept)  Residual
StdDev: 1.100023e-06 0.1562085 <- (0.156)2 = 0.0244 = MSE

Fixed effects: log(AUC0t) ~ drug + seq + prd
                Value  Std.Error DF   t-value p-value
(Intercept)  9.516955 0.05904125 12 161.19163  0.0000
drug2        0.062297 0.05904125 12   1.05514  0.3121
seq2        -0.036450 0.05904125 12  -0.61736  0.5485
prd2        -0.048908 0.05904125 12  -0.82837  0.4236
...
Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max
-1.8446164 -0.7801051  0.1796820  0.6539527  1.6438227

Number of Observations: 28
Number of Groups:
         subj seq %in% subj
           14            14
            numDF denDF   F-value p-value
(Intercept)     1    12 103679.28  <.0001
drug            1    12      1.11  0.3121
seq             1    12      0.38  0.5485
prd             1    12      0.69  0.4236

Type I Tests of Fixed Effects
     numDF denDF   F-value p-value
drug     1    12 1.1133109  0.3121
seq      1    12 0.3811317  0.5485
prd      1    12 0.6862044  0.4236

Type III Tests of Fixed Effects
     numDF denDF   F-value p-value
drug     1    12 1.1133109  0.3121
seq      1    12 0.3811317  0.5485
prd      1    12 0.6862044  0.4236

Since we will still stick on lm() with 2x2x2 study, so bear will show the outputs as
...
Intra_subj. CV = 100*sqrt(exp(MSResidual)-1) = 18.038 %
Inter_subj. CV = 100*sqrt(exp((MSSubject(seq)-MSResidual)/2)-1)
               = 0 % (with a negative variance component)
*** the above CV_intra is estimated from lm() which may be different
    from than that obtained from lme().


    MSResidual = 0.03201731
MSSubject(seq) = 0.01678485

Therefore, the CVintra from lme() will not be calculated in this case. But luckily for us, Detlew has showed us that V(subject(seq)) is zero (or should be close to zero) and the 90%CI was the same as what we got from lm() using SAS PROC MIXED. Sorry for this lengthy post.

All the best,
-- Yung-jin Lee
bear v2.9.2:- created by Hsin-ya Lee & Yung-jin Lee
Kaohsiung, Taiwan https://www.pkpd168.com/bear
Download link (updated) -> here

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,670 registered users;
25 visitors (0 registered, 25 guests [including 10 identified bots]).
Forum time: 23:58 CEST (Europe/Vienna)

The true Enlightenment thinker, the true rationalist,
never wants to talk anyone into anything.
No, he does not even want to convince;
all the time he is aware that he may be wrong.    Karl R. Popper

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5