bear for 2x2x2 study with negative variance components [Software]
Dear all,
Using lme() to a 2x2x2 BE study, we can code with R (taking AUC0-t as example of the dataset in this thread) something like
Then outputs will be
Since we will still stick on lm() with 2x2x2 study, so bear will show the outputs as
Therefore, the CVintra from lme() will not be calculated in this case. But luckily for us, Detlew has showed us that V(subject(seq)) is zero (or should be close to zero) and the 90%CI was the same as what we got from lm() using SAS PROC MIXED. Sorry for this lengthy post.
Using lme() to a 2x2x2 BE study, we can code with R (taking AUC0-t as example of the dataset in this thread) something like
modlnAUC0t<-lme(log(AUC0t) ~ drug + seq + prd,
random=~1|subj/seq,
data=blablabla, method="REML")
cat("\n")
print(summary(modlnAUC0t))
cat("\n")
cat("Type I Tests of Fixed Effects\n")
print(anova(modlnAUC0t)[2:4,])
cat("\n")
cat("Type III Tests of Fixed Effects\n")
print(anova(modlnAUC0t, type="marginal")[2:4,])
cat("\n\n")
...
Then outputs will be
Linear mixed-effects model fit by REML
Data: blablabla
AIC BIC logLik
2.163918 10.41029 5.918041
Random effects:
Formula: ~1 | subj
(Intercept)
StdDev: 1.106768e-06 <- (1.11*10-6)2 ≈ 0 = V(subject(seq))
Formula: ~1 | seq %in% subj
(Intercept) Residual
StdDev: 1.100023e-06 0.1562085 <- (0.156)2 = 0.0244 = MSE
Fixed effects: log(AUC0t) ~ drug + seq + prd
Value Std.Error DF t-value p-value
(Intercept) 9.516955 0.05904125 12 161.19163 0.0000
drug2 0.062297 0.05904125 12 1.05514 0.3121
seq2 -0.036450 0.05904125 12 -0.61736 0.5485
prd2 -0.048908 0.05904125 12 -0.82837 0.4236
...
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.8446164 -0.7801051 0.1796820 0.6539527 1.6438227
Number of Observations: 28
Number of Groups:
subj seq %in% subj
14 14
numDF denDF F-value p-value
(Intercept) 1 12 103679.28 <.0001
drug 1 12 1.11 0.3121
seq 1 12 0.38 0.5485
prd 1 12 0.69 0.4236
Type I Tests of Fixed Effects
numDF denDF F-value p-value
drug 1 12 1.1133109 0.3121
seq 1 12 0.3811317 0.5485
prd 1 12 0.6862044 0.4236
Type III Tests of Fixed Effects
numDF denDF F-value p-value
drug 1 12 1.1133109 0.3121
seq 1 12 0.3811317 0.5485
prd 1 12 0.6862044 0.4236
Since we will still stick on lm() with 2x2x2 study, so bear will show the outputs as
...
Intra_subj. CV = 100*sqrt(exp(MSResidual)-1) = 18.038 %
Inter_subj. CV = 100*sqrt(exp((MSSubject(seq)-MSResidual)/2)-1)
= 0 % (with a negative variance component)
*** the above CV_intra is estimated from lm() which may be different
from than that obtained from lme().
MSResidual = 0.03201731
MSSubject(seq) = 0.01678485
Therefore, the CVintra from lme() will not be calculated in this case. But luckily for us, Detlew has showed us that V(subject(seq)) is zero (or should be close to zero) and the 90%CI was the same as what we got from lm() using SAS PROC MIXED. Sorry for this lengthy post.
—
All the best,
-- Yung-jin Lee
bear v2.9.2:- created by Hsin-ya Lee & Yung-jin Lee
Kaohsiung, Taiwan https://www.pkpd168.com/bear
Download link (updated) -> here
All the best,
-- Yung-jin Lee
bear v2.9.2:- created by Hsin-ya Lee & Yung-jin Lee
Kaohsiung, Taiwan https://www.pkpd168.com/bear
Download link (updated) -> here
Complete thread:
- How to calculate intersubject variability in PHX WinNonlin zan 2014-01-29 23:58 [Software]
- Negative variance component Helmut 2014-01-30 01:16
- Negative variance component zan 2014-01-30 18:11
- Negative variance component zan 2014-01-31 00:16
- Negative variance component ElMaestro 2014-01-31 08:20
- Negative variance component yjlee168 2014-01-31 10:26
- Example data set Helmut 2014-02-01 16:03
- Example data set yjlee168 2014-02-01 17:40
- PHX build 6.3.0.395 / 6.4.0.511 Helmut 2014-02-02 02:04
- PHX build 6.3.0.395 / 6.4.0.511 yjlee168 2014-02-02 07:54
- PHX build 6.3.0.395 / 6.4.0.511 Helmut 2014-02-02 02:04
- Example data set yjlee168 2014-02-01 17:40
- Example data set Helmut 2014-02-01 16:03
- Negative variance component ElMaestro 2014-02-01 16:31
- Negative variance component yjlee168 2014-02-01 17:47
- Just thinking loud ElMaestro 2014-02-01 19:02
- All models are wrong… Helmut 2014-02-02 02:31
- another book for linear model yjlee168 2014-02-02 08:07
- All models are wrong… Helmut 2014-02-02 02:31
- Just thinking loud ElMaestro 2014-02-01 19:02
- References Helmut 2014-02-02 02:19
- References ElMaestro 2014-02-02 09:56
- Negative variance component yjlee168 2014-02-01 17:47
- Negative variance component – Chow/Liu d_labes 2014-02-03 09:02
- Negative variance component – Chow/Liu ElMaestro 2014-02-03 10:22
- Variance components – Proc mixed d_labes 2014-02-03 11:58
- Variance components – Proc mixed ElMaestro 2014-02-03 12:58
- Variance components – Proc mixed 90% CIs d_labes 2014-02-03 13:16
- Variance components – Proc mixed Helmut 2014-02-03 14:14
- FDA code for non-replicate crossover? d_labes 2014-02-03 15:54
- Proc GLM rulez Helmut 2014-02-03 16:16
- Variance components – Proc mixed yjlee168 2014-02-03 20:43
- NOBOUND Helmut 2014-02-03 22:08
- FDA code for non-replicate crossover? d_labes 2014-02-03 15:54
- Variance components – Proc mixed ElMaestro 2014-02-03 12:58
- Variance components – Proc mixed d_labes 2014-02-03 11:58
- lm() or lme() for 2x2x2 study design? yjlee168 2014-02-03 20:22
- lm() or lme() for 2x2x2 study design? ElMaestro 2014-02-03 22:11
- lm() or lme() for 2x2x2 study design? yjlee168 2014-02-04 13:09
- bear for 2x2x2 study with negative variance componentsyjlee168 2014-02-05 19:12
- lm() or lme() for 2x2x2 study design? yjlee168 2014-02-04 13:09
- lm() or lme() for 2x2x2 study design? ElMaestro 2014-02-03 22:11
- Negative variance component – Chow/Liu ElMaestro 2014-02-03 10:22
- Negative variance component Helmut 2014-01-30 01:16