comparison with SAS [🇷 for BE/BA]

posted by yicaoting  – NanKing, China, 2013-02-15 19:58 (4507 d 05:53 ago) – Posting: # 10037
Views: 14,646

subject(sequence) random, n=24/23:

❝ 104.98% (99.83–110.40%), CVintra 9.96%

subject(sequence) fixed, n=24/23:

❝ 104.76% (99.61–110.18%), CVintra 9.95%

subject(sequence) random, n=23/23:

❝ 104.76% (99.61–110.18%) CVintra 9.95%

subject(sequence) fixed, n=23/23:

❝ 104.76% (99.61–110.18%) CVintra 9.95%[/list]


Using the same data with SAS's GLM procedure, results are:
n=24/23
        Least Squares Means for Effect formulation

               Difference
                  Between    90% Confidence Limits for
   i    j           Means       LSMean(i)-LSMean(j)

   1    2        0.046485     -0.003939     0.096910



n=23/23
        Least Squares Means for Effect formulation

               Difference
                  Between    90% Confidence Limits for
   i    j           Means       LSMean(i)-LSMean(j)

   1    2        0.046485       -0.003939     0.096910


Exactly the same. Transform the above results to PE and CI:
PE: 1.047582365
CI: 0.996068748 to 1.101761211

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,677 registered users;
30 visitors (0 registered, 30 guests [including 10 identified bots]).
Forum time: 02:51 CEST (Europe/Vienna)

Complex, statistically improbable things are by their nature
more difficult to explain than
simple, statistically probable things.    Richard Dawkins

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5