Power with Fieller [General Sta­tis­tics]

posted by martin  – Austria, 2012-11-15 18:29 (4599 d 16:54 ago) – Posting: # 9534
Views: 6,113

Dear all!

We recently encountered an unexpected behavior (at least I was not aware of it) with Fieller confidence intervals. It seems that the power for showing equivalence is not maximized at delta = 1 for rather large variances. Is there an error in the code or is this behavior well known?

best regards

martin

library(pairwiseCI)
set.seed(7750)
nsim <- 1E5
sd <- 0.25
res1 <- res2 <- res3 <- res4 <- matrix(NA,ncol=2,nrow=nsim)
n <- 10
for(i in 1:nsim){
   a1 <- rnorm(n,1,sd=sd)
   a2 <- rnorm(n,0.975,sd=sd)
   a3 <- rnorm(n,1.025,sd=sd)
   a4 <- rnorm(n,1.050,sd=sd)
   b <- rnorm(n,1,sd=sd)
   res1[i,] <- as.vector(Param.ratio(a1,b,conf.level=0.9,var.equal=F)$conf.int)
   res2[i,] <- as.vector(Param.ratio(a2,b,conf.level=0.9,var.equal=F)$conf.int)
   res3[i,] <- as.vector(Param.ratio(a3,b,conf.level=0.9,var.equal=F)$conf.int)
   res4[i,] <- as.vector(Param.ratio(a4,b,conf.level=0.9,var.equal=F)$conf.int)
}

# delta=1: expected to have the largest power
mean(res1[,1]>0.8 & res1[,2]<1.25)
# delta=0.975
mean(res2[,1]>0.8 & res2[,2]<1.25)
# delta=1.025
mean(res3[,1]>0.8 & res3[,2]<1.25)
# delta=1.05
mean(res4[,1]>0.8 & res4[,2]<1.25)

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,676 registered users;
46 visitors (0 registered, 46 guests [including 10 identified bots]).
Forum time: 12:24 CEST (Europe/Vienna)

Complex, statistically improbable things are by their nature
more difficult to explain than
simple, statistically probable things.    Richard Dawkins

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5