Example [Bioanalytics]

posted by Helmut Homepage – Vienna, Austria, 2019-03-17 02:56 (2261 d 02:23 ago) – Posting: # 20043
Views: 7,179

Hi ElMaestro,

played with an example of a study I have on my desk. Chiral GC/MS, quadratic model, w=1/x2.

ObjF1 <- function(x) {
  w <- 1/Conc^x
  M <- lm(Ratio ~ Conc + I(Conc^2), weights=w)
  return(sum(abs(resid(M)/Conc)))
}
ObjF2 <- function(x) {
  w <- 1/Ratio^x
  M <- lm(Ratio ~ Conc + I(Conc^2), weights=w)
  return(sum(abs(resid(M)/Conc)))
}
IC <- function(m, n) {
  return(list(AIC=signif(extractAIC(m, k=2)[2],5),
              BIC=signif(extractAIC(m, k=log(n))[2]),5))
}
Acc <- function(m, x, y) {
  if (coef(m)[[3]] == 0) stop("panic!")
  if (coef(m)[[3]] < 0 {
    return(100*(-(coef(m)[[2]]/2/coef(m)[[3]] +
                  sqrt((coef(m)[[2]]/2/coef(m)[[3]])^2-
                       (coef(m)[[1]]-y)/coef(m)[[3]])))/x)
  } else {
    return(100*(-(coef(m)[[2]]/2/coef(m)[[3]] -
                  sqrt((coef(m)[[2]]/2/coef(m)[[3]])^2-
                       (coef(m)[[1]]-y)/coef(m)[[3]])))/x)
  }
}
Conc  <- c(0.1, 0.1, 0.3, 0.3, 0.9, 0.9, 2, 2, 6, 6, 12, 12, 24, 24)
Ratio <- c(0.022, 0.024, 0.073, 0.068, 0.193, 0.204, 0.438, 0.433,
           1.374, 1.376, 2.762, 2.732, 5.616, 5.477)
n     <- length(Conc)
w.x1  <- 1/Conc
w.x2  <- 1/Conc^2
x.opt <- optimize(ObjF1,  c(0, 10))$minimum
w.xo  <- 1/Conc^x.opt
w.y1  <- 1/Ratio
w.y2  <- 1/Ratio^2
y.opt <- optimize(ObjF2,  c(0, 10))$minimum
w.yo  <- 1/Ratio^x.opt
dupl  <- sum(duplicated(Conc))
var   <- n/2
for (j in 1:dupl) {
  var[j] <- var(c(Ratio[j], Ratio[j+1]))
}
w.var <- 1/rep(var, each=2)
m.1   <- lm(Ratio ~ Conc + I(Conc^2))
m.2   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.x1)
m.3   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.x2)
m.4   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.xo)
m.5   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.y1)
m.6   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.y2)
m.7   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.yo)
m.8   <- lm(Ratio ~ Conc + I(Conc^2), weights=w.var)
mods  <- c("w=1", "w=1/x", "w=1/x^2", "w=1/x^opt",
           "w=1/y", "w=1/y^2", "w=1/y^opt", "w=1/sd.y^2")
AIC   <- c(IC(m.1, n=n)$AIC, IC(m.2, n=n)$AIC, IC(m.3, n=n)$AIC, IC(m.4, n=n)$AIC,
           IC(m.5, n=n)$AIC, IC(m.6, n=n)$AIC, IC(m.7, n=n)$AIC, IC(m.8, n=n)$AIC)
BIC   <- c(IC(m.1, n=n)$BIC, IC(m.2, n=n)$BIC, IC(m.3, n=n)$BIC, IC(m.4, n=n)$BIC,
           IC(m.5, n=n)$BIC, IC(m.6, n=n)$BIC, IC(m.7, n=n)$BIC, IC(m.8, n=n)$BIC)
res1  <- data.frame(model=mods, exp=signif(c(0:2, x.opt, 1:2, y.opt, NA),5),
                    AIC=signif(AIC,5), BIC=signif(BIC,5))
res2  <- data.frame(Conc=Conc,
                    Acc(m=m.1, x=Conc, y=Ratio), Acc(m=m.2, x=Conc, y=Ratio),
                    Acc(m=m.3, x=Conc, y=Ratio), Acc(m=m.4, x=Conc, y=Ratio),
                    Acc(m=m.5, x=Conc, y=Ratio), Acc(m=m.6, x=Conc, y=Ratio),
                    Acc(m=m.7, x=Conc, y=Ratio), Acc(m=m.8, x=Conc, y=Ratio))
names(res2) <- c("Conc", mods)
cat("\nAkaike & Bayesian Information Critera (smaller is better)\n");print(res1);cat("\nAccuracy (%)\n");print(round(res2, 2), row.names=F)


I got:

Akaike & Bayesian Information Critera (smaller is better)
       model    exp      AIC      BIC
1        w=1 0.0000  -94.099  -92.181
2      w=1/x 1.0000 -127.480 -125.560
3    w=1/x^2 2.0000 -131.720 -129.800

4  w=1/x^opt 1.3355 -132.920 -131.010
5      w=1/y 1.0000 -106.670 -104.750
6    w=1/y^2 2.0000  -90.571  -88.654
7  w=1/y^opt 2.5220 -105.150 -103.230

8 w=1/sd.y^2     NA   62.387   64.304

Accuracy (%)
 Conc    w=1  w=1/x w=1/x^2 w=1/x^opt  w=1/y w=1/y^2 w=1/y^opt w=1/sd.y^2
  0.1 115.66  96.07   94.53     94.63  96.48   94.95     95.02      99.04
  0.1 124.45 104.96  103.49    103.56 105.37  103.93    103.96     107.83
  0.3 113.24 107.57  107.64    107.46 107.74  107.97    107.65     107.71
  0.3 105.92 100.17  100.18    100.02 100.33  100.49    100.21     100.39
  0.9  96.30  95.06   95.52     95.29  95.14   95.77     95.41      94.46
  0.9 101.66 100.48  100.98    100.74 100.56  101.24    100.86      99.83
  2.0  97.07  97.06   97.63     97.40  97.12   97.85     97.49      96.25
  2.0  95.97  95.96   96.51     96.29  96.01   96.74     96.38      95.15
  6.0 100.54 101.06  101.53    101.37 101.10  101.71    101.43     100.29
  6.0 100.69 101.21  101.68    101.51 101.24  101.85    101.58     100.44
 12.0 100.48 100.86  101.08    101.03 100.89  101.18    101.07     100.38
 12.0  99.40  99.78  100.01     99.95  99.81  100.10     99.99      99.30
 24.0 101.23 101.10  100.81    100.98 101.10  100.75    100.98     101.23
 24.0  98.77  98.66   98.40     98.56  98.67   98.35     98.56      98.77


Hey, yours with w=1/x1.3355 is the winner! Duno why the ICs of 1/sy² are that bad. Coding error? The accuracy looks fine. Try a plot:

plot(Conc, Ratio, type="n", log="xy", las=1)
points(Conc, Ratio, pch=21, cex=1.5, col="blue", bg="#CCCCFF80")
curve(coef(m.4)[[1]]+coef(m.4)[[2]]*x+coef(m.4)[[3]]*x^2, range(Conc),
      lwd=2, col="darkgreen", add=TRUE)
curve(coef(m.8)[[1]]+coef(m.8)[[2]]*x+coef(m.8)[[3]]*x^2, range(Conc),
      lwd=2, col="red", add=TRUE)

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,672 registered users;
30 visitors (0 registered, 30 guests [including 18 identified bots]).
Forum time: 06:20 CEST (Europe/Vienna)

An expert is someone who knows some of the worst mistakes
that can be made in his subject,
and how to avoid them.    Werner Heisenberg

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5