theta0 within PE-constraints [theta1, theta2] [RSABE / ABEL]

posted by Helmut Homepage – Vienna, Austria, 2017-12-08 13:33 (2713 d 07:00 ago) – Posting: # 18046
Views: 4,011

Hi Yura,

❝ How to calculate scABEL.ad (alpha = 0.05, CV = 0.3043689, design = "2x3x3", theta0 = 0.77058, regulator = "EMA", n = c (15,15,15)) if the point estimate is not in [0.80 ; 1.25] (SWR = 0.298 [0.79755; 1.25385])? :confused:


Note the error message thrown by scABEL.ad():

library(PowerTOST)
scABEL.ad(alpha=0.05, CV=0.3043689, design="2x3x3", theta0=0.77058,
          regulator="EMA", n=c(15,15,15))
Error in scABEL.ad(alpha = 0.05, CV = 0.3043689, design = "2x3x3", theta0 = 0.77058,  :
  theta0 must be within [theta1, theta2]


See the man-page of scABEL.ad():

theta0

‘True’ or assumed bioavailability ratio. Defaults to 0.90 if not given explicitly.


theta1

Conventional lower ABE limit to be applied in the mixed procedure if CVwR==CVswitch. Also lower limit for the point estimate constraint. Defaults to 0.80 if not given explicitly.


theta2

Conventional upper ABE limit to be applied in the mixed procedure if CVwR==CVswitch. Also upper limit for the point estimate constraint. Defaults to 1.25 if not given explicitly.


The purpose of scABEL.ad() is to iteratively adjust α to control the Type I Error either before the study (and see how power is affected with the argument details=TRUE) or post hoc when the T/R-ratio is already known. In both cases ABEL cannot be shown if theta0 would be outside the PE-constraints theta1, theta2 (0.80, 1.25). Hence, modifying your example the most extreme case (theta0=theta1=1/theta2) would be:

library(PowerTOST)
scABEL.ad(alpha=0.05, CV=0.3043689, design="2x3x3", theta0=0.8,
          regulator="EMA", n=c(15,15,15))

+++++++++++ scaled (widened) ABEL ++++++++++++
         iteratively adjusted alpha
   (simulations based on ANOVA evaluation)
----------------------------------------------
Study design: 2x3x3 (TRR|RTR|RRT)
log-transformed data (multiplicative model)
1,000,000 studies in each iteration simulated.

CVwR 0.3044, n(i) 15|15|15 (N 45)
Nominal alpha                 : 0.05
True ratio                    : 0.8000
Regulatory settings           : EMA (ABEL)
Switching CVwR                : 0.3
Regulatory constant           : 0.76
Expanded limits               : 0.7975 ... 1.2538
Upper scaling cap             : CVwR > 0.5
PE constraints                : 0.8000 ... 1.2500
Empiric TIE for alpha 0.0500  : 0.06805
Power for theta0 0.8000       : 0.076
Iteratively adjusted alpha    : 0.03616
Empiric TIE for adjusted alpha: 0.05000

Power for theta0 0.8000       : 0.056


Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,669 registered users;
143 visitors (0 registered, 143 guests [including 6 identified bots]).
Forum time: 21:34 CEST (Europe/Vienna)

No matter what side of the argument you are on,
you always find people on your side
that you wish were on the other.    Thomas Berger

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5