TIE depends on CVwR (and n) [RSABE / ABEL]

posted by Helmut Homepage – Vienna, Austria, 2017-04-26 16:17 (2939 d 02:35 ago) – Posting: # 17267
Views: 12,506

Hi Yura,

can you please explain what you mean by the abbreviations you used?

❝ Correction of alpha is carried out by CVWR and CVWT-R (nR and nT-R, GRMR and

❝ GRMT-R, respectively, for TRR / RTR / RRT) or only by CVWR? Since it is necessary to calculate CIT-R.


The inflation of the Type I Error depends on CVwR (and to a minor extent on the sample size). CVwT – which is indeed nice to know – is not accessible in the partial replicate design.
Examples of the TIE and adjusting α for an assumed true ratio of 0.9:
  1. n = 48, balanced sequences
    library(PowerTOST)
    scABEL.ad(CV=0.35, n=48, design="2x3x3")

    +++++++++++ scaled (widened) ABEL ++++++++++++
             iteratively adjusted alpha
       (simulations based on ANOVA evaluation)
    ----------------------------------------------
    Study design: 2x3x3 (TRR|RTR|RRT)
    log-transformed data (multiplicative model)
    1,000,000 studies in each iteration simulated.

    CVwR 0.35, n(i) 16|16|16 (N 48)
    Nominal alpha                 : 0.05
    True ratio                    : 0.9000
    Regulatory settings           : EMA (ABEL)
    Switching CVwR                : 0.3
    Regulatory constant           : 0.76
    Expanded limits               : 0.7723 ... 1.2948
    Upper scaling cap             : CVwR > 0.5
    PE constraints                : 0.8000 ... 1.2500
    Empiric TIE for alpha 0.0500  : 0.05663
    Power for theta0 0.9000       : 0.801
    Iteratively adjusted alpha    : 0.04405
    Empiric TIE for adjusted alpha: 0.05000
    Power for theta0 0.9000       : 0.785


  2. Three dropouts
    scABEL.ad(CV=0.35, n=c(16, 14, 15), design="2x3x3")

    +++++++++++ scaled (widened) ABEL ++++++++++++
             iteratively adjusted alpha
       (simulations based on ANOVA evaluation)
    ----------------------------------------------
    Study design: 2x3x3 (TRR|RTR|RRT)
    log-transformed data (multiplicative model)
    1,000,000 studies in each iteration simulated.

    CVwR 0.35, n(i) 16|14|15 (N 45)
    Nominal alpha                 : 0.05
    True ratio                    : 0.9000
    Regulatory settings           : EMA (ABEL)
    Switching CVwR                : 0.3
    Regulatory constant           : 0.76
    Expanded limits               : 0.7723 ... 1.2948
    Upper scaling cap             : CVwR > 0.5
    PE constraints                : 0.8000 ... 1.2500
    Empiric TIE for alpha 0.0500  : 0.05634
    Power for theta0 0.9000       : 0.779
    Iteratively adjusted alpha    : 0.04420
    Empiric TIE for adjusted alpha: 0.05000
    Power for theta0 0.9000       : 0.762

Due to the smaller sample size in #2 the TIE is less inflated (0.05634 < 0.05663) and less adjustment is required (0.04420 > 0.4405) to preserve the patient’s risk. On the other hand the narrower CI (91.16% < 91.19%) cannot outweigh the loss in power (76.2% < 78.5%).

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,670 registered users;
87 visitors (0 registered, 87 guests [including 62 identified bots]).
Forum time: 18:52 CEST (Europe/Vienna)

No matter what side of the argument you are on,
you always find people on your side
that you wish were on the other.    Thomas Berger

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5