gls() for unequal variances? [🇷 for BE/BA]

posted by d_labes  – Berlin, Germany, 2010-04-26 18:36 (5532 d 22:40 ago) – Posting: # 5238
Views: 62,548

Dear Helmut,

❝ ... I would go with Welch-tests, because ANOVA (or lm and lme) assume

❝ homoscedasticity.


What about:
require(nlme) # HS: added, because not loaded by default
# must use gls() because lme() does not allow for no random effect
glsModel <- gls(lnAUC0t ~ drug, weights=varIdent(form=~1|drug), data=TotalData)
summary(glsModel)


This gives (20 subjects bear data) :
Generalized least squares fit by REML
  Model: lnAUC0t ~ drug
  Data: TotalData
       AIC      BIC    logLik
  8.491722 12.05321 -0.245861

Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | drug
 Parameter estimates:
        1         2
1.0000000 0.4173818  (seems to give us different variances as portion of residual, hurrrrah)

Coefficients:
              Value Std.Error  t-value p-value
(Intercept) 7.10189 0.1056507 67.22045  0.0000
drug2       0.01594 0.1144841  0.13923  0.8908


But astonishing :confused::
intervals(glsModel, level=0.9)
Approximate 90% confidence intervals

 Coefficients:
                 lower    est.     upper
(Intercept)  6.9186849 7.10189 7.2850951
drug2       -0.1825826 0.01594 0.2144626

#back-transformed
T vs. R       83.31   101.61   123.92 (same as without weights or lm() :-()

Regards,

Detlew

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,677 registered users;
41 visitors (0 registered, 41 guests [including 11 identified bots]).
Forum time: 17:17 CEST (Europe/Vienna)

Philosophy, like medicine, has plenty of drugs, few good remedies,
and hardly any specific cures.    Sebastien-Roch Nicolas de Chamfort

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5