Getting variance components [🇷 for BE/BA]

posted by d_labes  – Berlin, Germany, 2017-02-08 11:13 (3054 d 11:08 ago) – Posting: # 17034
Views: 19,768

Dear StatR,

sorry for confusing you. I was a little bit sloppy in the post and mixed the factor names in Bear with mine.

To clarify my naming convention and coding:
tmt is treatment coded as "T" or "R"
period is period no
sequence is sequence coded as "TRTR" or "RTRT" (or whatever you have)
subject is subject no.
y is log-transformed PK metric (Cmax or AUC or whatever you like to evaluate)

Don't forget to make them as.factor()!

Then call
muddle <- lme(y ~ tmt + period + sequence,
              # random variance-covariance matrix
              random= ~ tmt-1|subject,
              #different within variabilities                 
              weights=varIdent(form = ~ 1 | tmt),
              data=EMAsetII, method="REML")


If you prefer your numeric coding of tmt = Formula and Sequence:
Don't forget to make them as.factor()!
Then call
muddle <- lme(y ~ Formula + Period + Sequence,
              random= ~ Formula-1|subject,
              weights=varIdent(form = ~ 1 | Formula),
              data=EMAsetII, method="REML")


Using the dataset II from the EMA Q&A you will get the following output with my convention:
Linear mixed-effects model fit by REML
  Data: EMAsetII
  Log-restricted-likelihood: 15.33728
  Fixed: y ~ tmt + period + sequence
(Intercept)        tmtT     period2     period3 sequenceRTR sequenceTRR
7.904258602 0.022391427 0.001296055 0.048118876 0.054776131 0.050923729

Random effects:
 Formula: ~tmt - 1 | subject
 Structure: General positive-definite, Log-Cholesky parametrization
         StdDev     Corr
tmtR     0.19030500 tmtR
tmtT     0.24869920 0.964
Residual 0.09296929     

Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | tmt
 Parameter estimates:
       T        R
1.000000 1.237973
Number of Observations: 72
Number of Groups: 24


From that it is read (note that lme() works with SD instead of variances):
s2wT = 0.09296929^2
s2wR = (0.09296929*1.237973)^2 = 0.1150935^2
s2bT = 0.24869920^2
s2bR = 0.19030500^2
rho = 0.964 (unfortunately no more decimals)

Hope this helps.
Homework: Identify the variance-covariance terms with your coding :cool:.

Regards,

Detlew

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,674 registered users;
50 visitors (0 registered, 50 guests [including 12 identified bots]).
Forum time: 23:21 CEST (Europe/Vienna)

Complex, statistically improbable things are by their nature
more difficult to explain than
simple, statistically probable things.    Richard Dawkins

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5