lmer: Method B is ready for scaling [🇷 for BE/BA]

posted by Astea – Russia, 2016-11-06 12:50 (3092 d 02:39 ago) – Posting: # 16781
Views: 20,802

❝ If nobody does it during the next week I'll try to code it by myself.


Challenge accepted!

Here is my rough code:

library(readxl)
library(lmerTest)
options(contrasts=c("contr.treatment","contr.poly"))
Dataset<-read_excel("Dataset.xls", sheet = 1)

methodB.scABEL <- function(Dataset){
Dataset$Formulation<-factor(Dataset$Formulation, levels = c("R", "T"))
Dataset$Sequence<-factor(Dataset$Sequence, levels = c("TRTR", "RTRT"))
Dataset$Period<-factor(Dataset$Period)
mod.lmer <- (lmer(log(Data)~Sequence+Period+Formulation + (1|Subject/Sequence), data=Dataset))
FormulationEffect.lmer <- summary(mod.lmer)$coefficients["FormulationT","Estimate"]   cat("\n", "PE is", round(exp(as.numeric(FormulationEffect.lmer))*100, digits = 2), "\n")
FormulationT<-summary(mod.lmer)$coefficients["FormulationT",]  
CI_Lr<-round(exp(FormulationT[1]+FormulationT[2]*qt(0.05, FormulationT[3]))*100, 2)
CI_Ur<-round(exp(FormulationT[1]-FormulationT[2]*qt(0.05, FormulationT[3]))*100, 2)
cat("\n", "CI is", CI_Lr, "-", CI_Ur,"\n")

Dataset2<-Dataset[order(Dataset$Formulation), ]
n<-length(which(Dataset2$Formulation=="R"))

Dataset3<-Dataset2[-c((n+1):nrow(Dataset2)),]
for (i in 1:nrow(Dataset3)) {if(Dataset3$Period[i]==3) Dataset3$Formulation[i]<-"T" else if(Dataset3$Period[i]==2) Dataset3$Formulation[i]<-"T"}
for (i in 1:nrow(Dataset3)) {if(Dataset3$Period[i]==3) Dataset3$Period[i]<-2 else if(Dataset3$Period[i]==4) Dataset3$Period[i]<-2 else if(Dataset3$Period[i]==2) Dataset3$Period[i]<-1}

Dataset3$Formulation<-factor(Dataset3$Formulation, levels = c("R", "T"))
Dataset3$Sequence<-factor(Dataset3$Sequence, levels = c("RTRT", "TRTR"))
Dataset3$Period<-factor(Dataset3$Period)
Dataset3$Subject<-factor(Dataset3$Subject)
muddle   <- lm(log(Data)~Formulation+Period+Sequence+Subject, data=Dataset3)
CV_R<-(exp(anova(muddle)[5,3])-1)^(1/2)*100
cat("\n", "CV_R is", round(CV_R, 2),"\n")
{if (CV_R>30)
 CI_L<-exp(-anova(muddle)[5,3]^(1/2)*0.760)*100
 CI_U<-exp(anova(muddle)[5,3]^(1/2)*0.760)*100
cat("Wide CI:", round(CI_L,2),"-", round(CI_U,2))}
{if ((CI_Lr<CI_L)|(CI_Ur>CI_U)) cat("BE failed")
else cat("=> BE success")}
}

methodB.scABEL(Dataset)


gives
PE is 115.73

 CI is 107.17 - 124.97

 CV_R is 46.96
Wide CI: 71.23 - 140.4=> BE success>
 

as in Phoenix (see Helmut's RSABE tutorial). The code needs to be tested via another data...

"Being in minority, even a minority of one, did not make you mad"

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,668 registered users;
21 visitors (0 registered, 21 guests [including 8 identified bots]).
Forum time: 16:29 CEST (Europe/Vienna)

It is a well-known experience that the only truly enjoyable and
profitable way of studying mathematics is the method of
“filling in details” by one’s own efforts.    Cornelius Lanczos

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5