lme() does not work with all fixed effects [🇷 for BE/BA]

posted by yjlee168 Homepage – Kaohsiung, Taiwan, 2015-04-22 01:41 (3656 d 14:33 ago) – Posting: # 14730
Views: 25,176

Dear Helmut,

❝ ... The Q&A specifically mentions SAS’ Proc GLM, not Proc Mixed.


glm() works in R.

❝ In lme() it should be possible to specify all effects fixed. Actually the random effect(s) are optional. If is doesn’t work, lm() should do.


lme() does not work without random effect. Am I doing anything wrong?

> require(nlme)
Loading required package: nlme
> cnames<-c("subj","drug","seq", "prd","Cmax", "AUC0t", "AUC0INF","lnCmax","lnAUC0t","lnAUC0INF")
> TotalData<-read.csv(file="SingleRep_stat_demo.csv",header=TRUE,row.names=NULL,col.names=cnames, sep=",",dec=".")
> mod.lme<-lme(log(Cmax) ~ subj + seq +  prd + drug, data=TotalData, method="REML")

Error in getGroups.data.frame(dataMix, groups) :
  invalid formula for groups


If I compared lme(), lm(), and glm(), I got
> mod.lme<-lme(log(Cmax) ~ seq +  prd + drug, random=~drug -1|subj, data=TotalData, method="REML")  ###lme in bear
> mod.lm<-lm(log(Cmax) ~ subj + seq +  prd + drug, data=TotalData)    ## lm()
> mod.glm<-glm(log(Cmax) ~ subj + seq +  prd + drug, data=TotalData)  ## glm()
> AIC(mod.lme, mod.lm)

        df       AIC
mod.lme  6 -49.88309
mod.lm   6 -70.88094
Warning message:
In AIC.default(mod.lme, mod.lm) :
  models are not all fitted to the same number of observations

> AIC(mod.lme, mod.glm)
        df       AIC
mod.lme  6 -49.88309
mod.lm   6 -70.88094
Warning message:
In AIC.default(mod.lme, mod.lm) :
  models are not all fitted to the same number of observations


Summary of mod.lme
Linear mixed-effects model fit by REML
 Data: TotalData
        AIC       BIC   logLik
  -49.88309 -38.17563 30.94155

Random effects:
 Formula: ~drug - 1 | subj
              drug  Residual
StdDev: 0.04344759 0.1041244

Fixed effects: log(Cmax) ~ seq + prd + drug
                Value  Std.Error DF  t-value p-value
(Intercept)  7.314670 0.08349877 40 87.60213  0.0000
seq         -0.025701 0.04252039 12 -0.60445  0.5568
prd          0.016233 0.01244525 40  1.30438  0.1996
drug         0.046554 0.03015388 40  1.54387  0.1305
 Correlation:
     (Intr) seq    prd   
seq  -0.764             
prd  -0.373  0.000       
drug -0.461  0.000  0.000

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max
-2.8081617 -0.6114645  0.1380420  0.5476292  1.8620918

Number of Observations: 56
Number of Groups: 14

Summary of mod.lm
Call:
lm(formula = log(Cmax) ~ subj + seq + prd + drug, data = TotalData)

Residuals:
     Min       1Q   Median       3Q      Max
-0.29483 -0.07058  0.01211  0.07004  0.23080

Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept)  7.353905   0.087149  84.383   <2e-16 ***
subj        -0.007061   0.004041  -1.747   0.0866 . 
seq         -0.016555   0.032583  -0.508   0.6136   
prd          0.016233   0.014459   1.123   0.2668   
drug         0.046554   0.032332   1.440   0.1560   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.121 on 51 degrees of freedom
Multiple R-squared:  0.1126,    Adjusted R-squared:  0.04302
F-statistic: 1.618 on 4 and 51 DF,  p-value: 0.184

Summary of glm
Call:
glm(formula = log(Cmax) ~ subj + seq + prd + drug, data = TotalData)

Deviance Residuals:
     Min        1Q    Median        3Q       Max 
-0.29483  -0.07058   0.01211   0.07004   0.23080 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept)  7.353905   0.087149  84.383   <2e-16 ***
subj        -0.007061   0.004041  -1.747   0.0866 . 
seq         -0.016555   0.032583  -0.508   0.6136   
prd          0.016233   0.014459   1.123   0.2668   
drug         0.046554   0.032332   1.440   0.1560   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 0.01463458)

    Null deviance: 0.84108  on 55  degrees of freedom
Residual deviance: 0.74636  on 51  degrees of freedom
AIC: -70.881

Number of Fisher Scoring iterations: 2

> AIC(mod.lm, mod.glm)
        df       AIC
mod.lm   6 -70.88094
mod.glm  6 -70.88094

All the best,
-- Yung-jin Lee
bear v2.9.2:- created by Hsin-ya Lee & Yung-jin Lee
Kaohsiung, Taiwan https://www.pkpd168.com/bear
Download link (updated) -> here

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,668 registered users;
24 visitors (0 registered, 24 guests [including 6 identified bots]).
Forum time: 16:14 CEST (Europe/Vienna)

It is a well-known experience that the only truly enjoyable and
profitable way of studying mathematics is the method of
“filling in details” by one’s own efforts.    Cornelius Lanczos

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5