Adjusted indirect comparisons: Algebra [General Sta­tis­tics]

posted by d_labes  – Berlin, Germany, 2020-10-01 19:03 (1681 d 19:15 ago) – Posting: # 21961
Views: 3,744

Dear Helmut,

❝ ... The error term in the 2×2×2 crossover is given by $$SE_\textrm{(d)}=SE_\Delta=\widehat{\sigma}_\textrm{w}\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}},\tag{2}$$where \(\small{\widehat{\sigma}_\textrm{w}=SD_\textrm{w}=\sqrt{MSE}}\) from ANOVA. Alternatively we can write $$SE_\Delta=\sqrt{\frac{SD_{\textrm{w}}^{2}}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\tag{3}$$

Here I can't follow you. From where arises the 2 in formula (3)

Regards,

Detlew

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,669 registered users;
70 visitors (0 registered, 70 guests [including 8 identified bots]).
Forum time: 14:19 CEST (Europe/Vienna)

We should not speak so that it is possible
for the audience to understand us,
but so that it is impossible
for them to misunderstand us.    Quintilian

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5