PHX build 6.3.0.395 / 6.4.0.511 [Software]
Hi Yung-jin,
There are small differences to bear, since I started from the raw data and performed NCA first. This is a complete, balanced data set; therefore, the same results for
Table
This table is missing for the fixed effects model in the current release 6.3 (build 6.3.0.395) – therefore my workaround, but available in pre-release 1.4 (build 6.4.0.511).
Of course in the mixed model for AUCt and AUCinf:
Table
Table
Note the CVintra is not reported (why not?)…
❝ […] Could you present the results (part of it will be good enough) from running PHX (or its beta)?
There are small differences to bear, since I started from the raw data and performed NCA first. This is a complete, balanced data set; therefore, the same results for
subject(sequence)
random or fixed are expected.Table
Partial SS
Dependent Hypothesis DF SS MS F_stat P_value
Ln(Cmax) Sequence 1 0.0006903 0.0006903 0.02920 0.8672
Ln(Cmax) Sequence*Subject 12 0.2836764 0.0236397 1.32782 0.3155
Ln(Cmax) Formulation 1 0.0181691 0.0181691 1.02054 0.3323
Ln(Cmax) Period 1 0.0362379 0.0362379 2.03545 0.1792
Ln(Cmax) Error 12 0.2136406 0.0178034
Ln(AUCt) Sequence 1 0.0151077 0.0151077 0.71554 0.4142
Ln(AUCt) Sequence*Subject 12 0.2533637 0.0211136 0.63428 0.7791
Ln(AUCt) Formulation 1 0.0108554 0.0108554 0.32611 0.5785
Ln(AUCt) Period 1 0.0368259 0.0368259 1.10629 0.3136
Ln(AUCt) Error 12 0.3994534 0.0332878
Ln(AUCinf) Sequence 1 0.0143291 0.0143291 0.76043 0.4003
Ln(AUCinf) Sequence*Subject 12 0.2261202 0.0188434 0.60445 0.8022
Ln(AUCinf) Formulation 1 0.0150303 0.0150303 0.48214 0.5007
Ln(AUCinf) Period 1 0.0346915 0.0346915 1.11282 0.3122
Ln(AUCinf) Error 12 0.3740929 0.0311744
This table is missing for the fixed effects model in the current release 6.3 (build 6.3.0.395) – therefore my workaround, but available in pre-release 1.4 (build 6.4.0.511).
Of course in the mixed model for AUCt and AUCinf:
Warning 11094: Negative final variance component. Consider omitting this VC structure.
Table
Final Variance parameters
(mixed)Dependent Parameter Estimate
Ln(Cmax) Var(Sequence*Subject) 0.0029182
Ln(Cmax) Var(Residual) 0.0178034
Ln(Cmax) Intersubject CV 0.0540594
Ln(Cmax) Intrasubject CV 0.1340254
Ln(AUCt) Var(Sequence*Subject) -0.0060871
Ln(AUCt) Var(Residual) 0.0332878
Ln(AUCt) Intrasubject CV 0.1839783
Ln(AUCinf) Var(Sequence*Subject) -0.0061655
Ln(AUCinf) Var(Residual) 0.0311744
Ln(AUCinf) Intrasubject CV 0.1779478
Table
Final Variance parameters
(fixed)Dependent Parameter Estimate
Ln(Cmax) Var(Residual) 0.0178034
Ln(AUCt) Var(Residual) 0.0332878
Ln(AUCinf) Var(Residual) 0.0311744
Note the CVintra is not reported (why not?)…
—
Dif-tor heh smusma 🖖🏼 Довге життя Україна!![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- How to calculate intersubject variability in PHX WinNonlin zan 2014-01-29 23:58
- Negative variance component Helmut 2014-01-30 01:16
- Negative variance component zan 2014-01-30 18:11
- Negative variance component zan 2014-01-31 00:16
- Negative variance component ElMaestro 2014-01-31 08:20
- Negative variance component yjlee168 2014-01-31 10:26
- Example data set Helmut 2014-02-01 16:03
- Example data set yjlee168 2014-02-01 17:40
- PHX build 6.3.0.395 / 6.4.0.511Helmut 2014-02-02 02:04
- PHX build 6.3.0.395 / 6.4.0.511 yjlee168 2014-02-02 07:54
- PHX build 6.3.0.395 / 6.4.0.511Helmut 2014-02-02 02:04
- Example data set yjlee168 2014-02-01 17:40
- Example data set Helmut 2014-02-01 16:03
- Negative variance component ElMaestro 2014-02-01 16:31
- Negative variance component yjlee168 2014-02-01 17:47
- Just thinking loud ElMaestro 2014-02-01 19:02
- All models are wrong… Helmut 2014-02-02 02:31
- another book for linear model yjlee168 2014-02-02 08:07
- All models are wrong… Helmut 2014-02-02 02:31
- Just thinking loud ElMaestro 2014-02-01 19:02
- References Helmut 2014-02-02 02:19
- References ElMaestro 2014-02-02 09:56
- Negative variance component yjlee168 2014-02-01 17:47
- Negative variance component – Chow/Liu d_labes 2014-02-03 09:02
- Negative variance component – Chow/Liu ElMaestro 2014-02-03 10:22
- Variance components – Proc mixed d_labes 2014-02-03 11:58
- Variance components – Proc mixed ElMaestro 2014-02-03 12:58
- Variance components – Proc mixed 90% CIs d_labes 2014-02-03 13:16
- Variance components – Proc mixed Helmut 2014-02-03 14:14
- FDA code for non-replicate crossover? d_labes 2014-02-03 15:54
- Proc GLM rulez Helmut 2014-02-03 16:16
- Variance components – Proc mixed yjlee168 2014-02-03 20:43
- NOBOUND Helmut 2014-02-03 22:08
- FDA code for non-replicate crossover? d_labes 2014-02-03 15:54
- Variance components – Proc mixed ElMaestro 2014-02-03 12:58
- Variance components – Proc mixed d_labes 2014-02-03 11:58
- lm() or lme() for 2x2x2 study design? yjlee168 2014-02-03 20:22
- lm() or lme() for 2x2x2 study design? ElMaestro 2014-02-03 22:11
- lm() or lme() for 2x2x2 study design? yjlee168 2014-02-04 13:09
- bear for 2x2x2 study with negative variance components yjlee168 2014-02-05 19:12
- lm() or lme() for 2x2x2 study design? yjlee168 2014-02-04 13:09
- lm() or lme() for 2x2x2 study design? ElMaestro 2014-02-03 22:11
- Negative variance component – Chow/Liu ElMaestro 2014-02-03 10:22
- Negative variance component Helmut 2014-01-30 01:16