sampleN.NTID(): Example [Power / Sample Size]
Hi pharm07,
In your second script you forgot to state
❝ Kindly guide me with this example, i want to check whether i am making a mistake or not.
In your second script you forgot to state
theta0 = 0.95
. Hence, the default theta = 0.975
was employed.library(PowerTOST)
balance <- function(n, n.seq) {
# Round up to obtain balanced sequences
return(as.integer(n.seq * (n %/% n.seq + as.logical(n %% n.seq))))
}
nadj <- function(n, do.rate, n.seq) {
# Round up to compensate for anticipated dropout-rate
return(as.integer(balance(n / (1 - do.rate), n.seq)))
}
CV <- c(0.045, 0.07) # First element CVwT, second CVwR
do.rate <- 0.30 # Anticipated dropout-rate 30%
n <- sampleN.NTID(CV = CV, theta0 = 0.95, targetpower = 0.90,
print = FALSE, details = FALSE)[["Sample size"]]
dosed <- nadj(n, do.rate, 2) # Adjust the sample size
df <- data.frame(dosed = dosed, eligible = dosed:(n - 2))
for (j in 1:nrow(df)) {
df$dropouts[j] <- sprintf("%.1f%%", 100 * (1 - df$eligible[j] / df$dosed[j]))
df$power[j] <- suppressMessages(
power.NTID(CV = CV, theta0 = 0.95, n = df$eligible[j]))
}
print(df, row.names = FALSE)
dosed eligible dropouts power
146 146 0.0% 0.97046
146 145 0.7% 0.96815
146 144 1.4% 0.96887
146 143 2.1% 0.96730
146 142 2.7% 0.96592
146 141 3.4% 0.96512
146 140 4.1% 0.96470
146 139 4.8% 0.96316
146 138 5.5% 0.96322
146 137 6.2% 0.96172
146 136 6.8% 0.96048
146 135 7.5% 0.95969
146 134 8.2% 0.95892
146 133 8.9% 0.95649
146 132 9.6% 0.95497
146 131 10.3% 0.95505
146 130 11.0% 0.95347
146 129 11.6% 0.95245
146 128 12.3% 0.95101
146 127 13.0% 0.94969
146 126 13.7% 0.94851
146 125 14.4% 0.94723
146 124 15.1% 0.94594
146 123 15.8% 0.94386
146 122 16.4% 0.94258
146 121 17.1% 0.94121
146 120 17.8% 0.94039
146 119 18.5% 0.93931
146 118 19.2% 0.93649
146 117 19.9% 0.93461
146 116 20.5% 0.93393
146 115 21.2% 0.93164
146 114 21.9% 0.92946
146 113 22.6% 0.92741
146 112 23.3% 0.92519
146 111 24.0% 0.92361
146 110 24.7% 0.92132
146 109 25.3% 0.91851
146 108 26.0% 0.91725
146 107 26.7% 0.91563
146 106 27.4% 0.91393
146 105 28.1% 0.91186
146 104 28.8% 0.90848
146 103 29.5% 0.90711
146 102 30.1% 0.90354
146 101 30.8% 0.90250
146 100 31.5% 0.89851
—
Dif-tor heh smusma 🖖🏼 Довге життя Україна!![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- Estimation of sample size for NIT using ISCV By R pharm07 2022-05-03 11:23
- Estimation of sample size for NTI using ISCV By R dshah 2022-05-03 13:04
- PowerTOST Helmut 2022-05-03 14:38
- PowerTOST pharm07 2022-05-04 08:08
- PowerTOST Helmut 2022-05-04 10:33
- PowerTOST pharm07 2022-05-04 14:54
- PowerTOST pharm07 2022-05-11 05:30
- PowerTOST: sampleN.NTID() Helmut 2022-05-11 13:19
- PowerTOST: sampleN.NTID() pharm07 2022-05-18 05:18
- sampleN.NTID(): ExampleHelmut 2022-05-18 14:30
- sampleN.NTID(): Example pharm07 2022-05-19 05:36
- sampleN.NTID(): ExampleHelmut 2022-05-18 14:30
- PowerTOST: sampleN.NTID() pharm07 2022-05-18 05:18
- PowerTOST: sampleN.NTID() Helmut 2022-05-11 13:19
- PowerTOST pharm07 2022-05-11 05:30
- PowerTOST pharm07 2022-05-04 14:54
- PowerTOST Helmut 2022-05-04 10:33
- PowerTOST pharm07 2022-05-04 08:08