PowerTOST [Power / Sample Size]
as suggested by Dshah, assuming a T/R-ratio of 0.975 and a CV of 0.1:
library(PowerTOST) # attach the library
theta0 <- 0.975 # assumed T/R-ratio
CV <- 0.10 # intra-subject CV (assuming CVwT = CVwR)
target <- 0.80 # target power
design <- "2x2x4" # 4-period full replicate mandatory for the FDA
# EMA and most others:
sampleN.TOST(CV = CV, theta0 = theta0, theta1 = 0.90,
design = design, targetpower = target)
+++++++++++ Equivalence test - TOST +++++++++++
Sample size estimation
-----------------------------------------------
Study design: 2x2x4 (4 period full replicate)
log-transformed data (multiplicative model)
alpha = 0.05, target power = 0.8
BE margins = 0.9 ... 1.111111
True ratio = 0.975, CV = 0.1
Sample size (total)
n power
12 0.856278
# FDA and China CDE:
sampleN.NTID(CV = CV, theta0 = theta0, design = design,
targetpower = target)
+++++++++++ FDA method for NTIDs ++++++++++++
Sample size estimation
---------------------------------------------
Study design: 2x2x4 (TRTR|RTRT)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.
alpha = 0.05, target power = 0.8
CVw(T) = 0.1, CVw(R) = 0.1
True ratio = 0.975
ABE limits = 0.8 ... 1.25
Implied scABEL = 0.9002 ... 1.1108
Regulatory settings: FDA
- Regulatory const. = 1.053605
- 'CVcap' = 0.2142
Sample size search
n power
14 0.717480
16 0.788690
18 0.841790
# Beware of unequival variances!
CV.bad <- signif(CVp2CV(CV, ratio = 1.5), 4) # T worse than R
sampleN.NTID(CV = CV.bad, theta0 = theta0, design = design,
targetpower = target)
+++++++++++ FDA method for NTIDs ++++++++++++
Sample size estimation
---------------------------------------------
Study design: 2x2x4 (TRTR|RTRT)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.
alpha = 0.05, target power = 0.8
CVw(T) = 0.1096, CVw(R) = 0.0894
True ratio = 0.975
ABE limits = 0.8 ... 1.25
Implied scABEL = 0.9103 ... 1.0986
Regulatory settings: FDA
- Regulatory const. = 1.053605
- 'CVcap' = 0.2142
Sample size search
n power
20 0.758770
22 0.805070
CV.good <- signif(CVp2CV(CV, ratio = 1 / 1.5), 4) # T better than R
sampleN.NTID(CV = CV.good, theta0 = theta0, design = design,
targetpower = target)
+++++++++++ FDA method for NTIDs ++++++++++++
Sample size estimation
---------------------------------------------
Study design: 2x2x4 (TRTR|RTRT)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.
alpha = 0.05, target power = 0.8
CVw(T) = 0.0894, CVw(R) = 0.1096
True ratio = 0.975
ABE limits = 0.8 ... 1.25
Implied scABEL = 0.8912 ... 1.1220
Regulatory settings: FDA
- Regulatory const. = 1.053605
- 'CVcap' = 0.2142
Sample size search
n power
12 0.735990
14 0.814770
More details and examples in this article.
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- Estimation of sample size for NIT using ISCV By R pharm07 2022-05-03 11:23
- Estimation of sample size for NTI using ISCV By R dshah 2022-05-03 13:04
- PowerTOSTHelmut 2022-05-03 14:38
- PowerTOST pharm07 2022-05-04 08:08
- PowerTOST Helmut 2022-05-04 10:33
- PowerTOST pharm07 2022-05-04 14:54
- PowerTOST pharm07 2022-05-11 05:30
- PowerTOST: sampleN.NTID() Helmut 2022-05-11 13:19
- PowerTOST: sampleN.NTID() pharm07 2022-05-18 05:18
- sampleN.NTID(): Example Helmut 2022-05-18 14:30
- sampleN.NTID(): Example pharm07 2022-05-19 05:36
- sampleN.NTID(): Example Helmut 2022-05-18 14:30
- PowerTOST: sampleN.NTID() pharm07 2022-05-18 05:18
- PowerTOST: sampleN.NTID() Helmut 2022-05-11 13:19
- PowerTOST pharm07 2022-05-11 05:30
- PowerTOST pharm07 2022-05-04 14:54
- PowerTOST Helmut 2022-05-04 10:33
- PowerTOST pharm07 2022-05-04 08:08