replicateBE solution with interactions [General Sta­tis­tics]

posted by mittyri – Russia, 2019-12-23 13:30 (233 d 07:56 ago) – Posting: # 21020
Views: 2,989

(edited by mittyri on 2019-12-23 14:05)

Dear Nastya,

whenever possible use simple solutions, at least till the moment you must dive into mixed models galaxy ;-)

And more: interaction terms are not the same in SAS and R
take a look at method.B implementation inside replicateBE package
I just modified it a bit

library(replicateBE)
library(nlme)
alpha <- 0.05
options(contrasts=c("contr.treatment","contr.poly"))
Dataset <- rds01
Dataset$group<- factor(ifelse(as.numeric(levels(Dataset$subject))[Dataset$subject]<31, 1,2))
modB <- lme(log(PK) ~ sequence + group + sequence:group + period + period%in%group + treatment, random = ~1 | subject, na.action = na.omit, data = Dataset)

EMA.B <- summary(modB)
PE <- EMA.B$tTable["treatmentT", "Value"] # exp(PE) = 1.157275
CI <- exp(PE + c(-1, +1) * qt(1 - alpha, EMA.B$tTable["treatmentT", "DF"]) * EMA.B$tTable["treatmentT", "Std.Error"])
# CI = 1.071136 1.250340

Kind regards,
Mittyri

Complete thread:

Activity
 Admin contact
21,008 posts in 4,379 threads, 1,460 registered users;
online 14 (0 registered, 14 guests [including 6 identified bots]).
Forum time: Wednesday 21:26 UTC (Europe/Vienna)

Statistics is the art of never having to say you’re wrong.
Variance is what any two statisticians are at.    C.J. Bradfield

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5