Geometric mean and CV [Power / Sample Size]

posted by Helmut Homepage – Vienna, Austria, 2019-09-06 20:15 (1664 d 17:49 ago) – Posting: # 20549
Views: 6,120

Hi Rocco,

❝ So basically your analysis follows from the fact that the variance of the difference of T and R equal the sum of the variance of T and the variance of R, correct?


Well, you have four variance components (s²wR, s²wT, s²bT, s²bR). Then
  1. Full replicate designs
    All are identifiable.
  2. 2×2×2 crossover (balanced and complete for simplicity – otherwise, weighting is required)
    s²w = (s²wR + s²wT)/2 and s²b = (s²bT + s²bR)/2.
  3. 2 group parallel
    Only the pooled (total) s²p. With a tricky mixed-effects model you could get s²pT and s²pR.
  4. One treatment (FIM)
    Only s²p.
Hence, if you want to plan #3 based on #4 you have to assume that the variances (within, between) of T and R are at least similar. ;-)

❝ And you are using the geometric CV as the estimate of CVp for R?


Yes.

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
22,957 posts in 4,819 threads, 1,639 registered users;
73 visitors (0 registered, 73 guests [including 5 identified bots]).
Forum time: 13:04 CET (Europe/Vienna)

Nothing shows a lack of mathematical education more
than an overly precise calculation.    Carl Friedrich Gauß

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5