Adjusted indirect comparisons: Algebra [General Sta­tis­tics]

posted by d_labes  – Berlin, Germany, 2020-10-01 19:03 (1739 d 09:05 ago) – Posting: # 21961
Views: 4,256

Dear Helmut,

❝ ... The error term in the 2×2×2 crossover is given by $$SE_\textrm{(d)}=SE_\Delta=\widehat{\sigma}_\textrm{w}\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}},\tag{2}$$where \(\small{\widehat{\sigma}_\textrm{w}=SD_\textrm{w}=\sqrt{MSE}}\) from ANOVA. Alternatively we can write $$SE_\Delta=\sqrt{\frac{SD_{\textrm{w}}^{2}}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\tag{3}$$

Here I can't follow you. From where arises the 2 in formula (3)

Regards,

Detlew

Complete thread:

UA Flag
Activity
 Admin contact
23,427 posts in 4,929 threads, 1,678 registered users;
32 visitors (0 registered, 32 guests [including 10 identified bots]).
Forum time: 04:08 CEST (Europe/Vienna)

No matter what side of the argument you are on,
you always find people on your side
that you wish were on the other.    Thomas Berger

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5